456 research outputs found
A phenotype of atypical apraxia of speech in a family carrying SQSTM1 mutation.
SQSTM1 mutations, coding for the p62 protein, were identified as a monogenic cause of Paget disease of bone and of amyotrophic lateral sclerosis. More recently, SQSTM1 mutations were identified in few families with frontotemporal dementia. We report a new family carrying SQSTM1 mutation and presenting with a clinical phenotype of speech apraxia or atypical behavioral disorders, associated with early visuo-contructional deficits. This study further supports the implication of SQSTM1 in frontotemporal dementia, and enlarges the phenotypic spectrum associated with SQSTM1 mutations
Ataxia with oculomotor apraxia type 2: clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients
Ataxia with oculomotor apraxia type 2 (AOA2) is an autosomal recessive disease due to mutations in the senataxin gene, causing progressive cerebellar ataxia with peripheral neuropathy, cerebellar atrophy, occasional oculomotor apraxia and elevated alpha-feto-protein (AFP) serum level. We compiled a series of 67 previously reported and 58 novel ataxic patients who underwent senataxin gene sequencing because of suspected AOA2. An AOA2 diagnosis was established for 90 patients, originating from 15 countries worldwide, and 25 new senataxin gene mutations were found. In patients with AOA2, median AFP serum level was 31.0 mu g/l at diagnosis, which was higher than the median AFP level of AOA2 negative patients: 13.8 mu g/l, P = 0.0004; itself higher than the normal level (3.4 mu g/l, range from 0.5 to 17.2 mu g/l) because elevated AFP was one of the possible selection criteria. Polyneuropathy was found in 97.5% of AOA2 patients, cerebellar atrophy in 96%, occasional oculomotor apraxia in 51%, pyramidal signs in 20.5%, head tremor in 14%, dystonia in 13.5%, strabismus in 12.3% and chorea in 9.5%. No patient was lacking both peripheral neuropathy and cerebellar atrophy. The age at onset and presence of occasional oculomotor apraxia were negatively correlated to the progression rate of the disease (P = 0.03 and P = 0.009, respectively), whereas strabismus was positively correlated to the progression rate (P = 0.03). An increased AFP level as well as cerebellar atrophy seem to be stable in the course of the disease and to occur mostly at or before the onset of the disease. One of the two patients with a normal AFP level at diagnosis had high AFP levels 4 years later, while the other had borderline levels. The probability of missing AOA2 diagnosis, in case of sequencing senataxin gene only in non-Friedreich ataxia non-ataxia-telangiectasia ataxic patients with AFP level >= 7 mu g/l, is 0.23% and the probability for a non-Friedreich ataxia non-ataxia-telangiectasia ataxic patient to be affected with AOA2 with AFP levels >= 7 mu g/l is 46%. Therefore, selection of patients with an AFP level above 7 mu g/l for senataxin gene sequencing is a good strategy for AOA2 diagnosis. Pyramidal signs and dystonia were more frequent and disease was less severe with missense mutations in the helicase domain of senataxin gene than with missense mutations out of helicase domain and deletion and nonsense mutations (P = 0.001, P = 0.008 and P = 0.01, respectively). The lack of pyramidal signs in most patients may be explained by masking due to severe motor neuropathy
Disruption of macroscale functional network organisation in patients with frontotemporal dementia
Neurodegenerative dementias have a profound impact on higher-order cognitive and behavioural functions. Investigating macroscale functional networks through cortical gradients provides valuable insights into the neurodegenerative dementia process and overall brain function. This approach allows for the exploration of unimodal-multimodal differentiation and the intricate interplay between functional brain networks. We applied cortical gradients mapping to resting-state functional MRI data of patients with frontotemporal dementia (FTD) (behavioural-bvFTD, non-fluent and semantic) and healthy controls. In healthy controls, the principal gradient maximally distinguished sensorimotor from default-mode network (DMN) and the secondary gradient visual from salience network (SN). In all FTD variants, the principal gradient’s unimodal-multimodal differentiation was disrupted. The secondary gradient, however, showed widespread disruptions impacting the interactions among all networks specifically in bvFTD, while semantic and non-fluent variants exhibited more focal alterations in limbic and sensorimotor networks. Additionally, the visual network showed responsive and/or compensatory changes in all patients. Importantly, these disruptions extended beyond atrophy distribution and related to symptomatology in patients with bvFTD. In conclusion, optimal brain function requires networks to operate in a segregated yet collaborative manner. In FTD, our findings indicate a collapse and loss of differentiation between networks not solely explained by atrophy. These specific cortical gradients’ fingerprints could serve as a functional signature for identifying early changes in neurodegenerative diseases or potential compensatory processes
Disruption of macroscale functional network organisation in patients with frontotemporal dementia
Neurodegenerative dementias have a profound impact on higher-order cognitive and behavioural functions. Investigating macroscale functional networks through cortical gradients provides valuable insights into the neurodegenerative dementia process and overall brain function. This approach allows for the exploration of unimodal-multimodal differentiation and the intricate interplay between functional brain networks. We applied cortical gradients mapping to resting-state functional MRI data of patients with frontotemporal dementia (FTD) (behavioural-bvFTD, non-fluent and semantic) and healthy controls. In healthy controls, the principal gradient maximally distinguished sensorimotor from default-mode network (DMN) and the secondary gradient visual from salience network (SN). In all FTD variants, the principal gradient’s unimodal-multimodal differentiation was disrupted. The secondary gradient, however, showed widespread disruptions impacting the interactions among all networks specifically in bvFTD, while semantic and non-fluent variants exhibited more focal alterations in limbic and sensorimotor networks. Additionally, the visual network showed responsive and/or compensatory changes in all patients. Importantly, these disruptions extended beyond atrophy distribution and related to symptomatology in patients with bvFTD. In conclusion, optimal brain function requires networks to operate in a segregated yet collaborative manner. In FTD, our findings indicate a collapse and loss of differentiation between networks not solely explained by atrophy. These specific cortical gradients’ fingerprints could serve as a functional signature for identifying early changes in neurodegenerative diseases or potential compensatory processes
Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates
Abnormal mitochondrial function has been found in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Mutations in the p62 gene (also known as SQSTM1) which encodes the p62 protein have been reported in both disorders supporting the idea of an ALS/FTD continuum. In this work the role of p62 in energy metabolism was studied in fibroblasts from FTD patients carrying two independent pathogenic mutations in the p62 gene, and in a p62-knock-down (p62 KD) human dopaminergic neuroblastoma cell line (SH-SY5Y). We found that p62 deficiency is associated with inhibited complex I mitochondrial respiration due to lack of NADH for the electron transport chain. This deficiency was also associated with increased levels of NADPH reflecting a higher activation of pentose phosphate pathway as this is accompanied with higher cytosolic reduced glutathione (GSH) levels. Complex I inhibition resulted in lower mitochondrial membrane potential and higher cytosolic ROS production. Pharmacological activation of transcription factor Nrf2 increased mitochondrial NADH levels and restored mitochondrial membrane potential in p62-deficient cells. Our results suggest that the phenotype is caused by a loss-of-function effect, because similar alterations were found both in the mutant fibroblasts and the p62 KD model. These findings highlight the implication of energy metabolism in pathophysiological events associated with p62 deficiency
TBK1: a new player in ALS linking autophagy and neuroinflammation.
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder affecting motor neurons, resulting in progressive muscle weakness and death by respiratory failure. Protein and RNA aggregates are a hallmark of ALS pathology and are thought to contribute to ALS by impairing axonal transport. Mutations in several genes known to contribute to ALS result in deposition of their protein products as aggregates; these include TARDBP, C9ORF72, and SOD1. In motor neurons, this can disrupt transport of mitochondria to areas of metabolic need, resulting in damage to cells and can elicit a neuroinflammatory response leading to further neuronal damage. Recently, eight independent human genetics studies have uncovered a link between TANK-binding kinase 1 (TBK1) mutations and ALS. TBK1 belongs to the IKK-kinase family of kinases that are involved in innate immunity signaling pathways; specifically, TBK1 is an inducer of type-1 interferons. TBK1 also has a major role in autophagy and mitophagy, chiefly the phosphorylation of autophagy adaptors. Several other ALS genes are also involved in autophagy, including p62 and OPTN. TBK1 is required for efficient cargo recruitment in autophagy; mutations in TBK1 may result in impaired autophagy and contribute to the accumulation of protein aggregates and ALS pathology. In this review, we focus on the role of TBK1 in autophagy and the contributions of this process to the pathophysiology of ALS
Maintenance of cross-sector partnerships: the role of frames in sustained collaboration
We examine the framing mechanisms used to maintain a cross-sector partnership (XSP) that was created to address a complex long-term social issue. We study the first eight years of existence of an XSP that aims to create a market for recycled phosphorus, a nutrient that is critical to crop growth but whose natural reserves have dwindled significantly. Drawing on 27 interviews and over 3,000 internal documents, we study the evolution of different frames used by diverse actors in an XSP. We demonstrate the role of framing in helping actors to avoid some of the common pitfalls for an XSP, such as debilitating conflict, and in creating sufficient common ground to sustain collaboration. As opposed to a commonly held assumption in the XSP literature, we find that collaboration in a partnership does not have to result in a unanimous agreement around a single or convergent frame regarding a contentious issue. Rather, successful collaboration between diverse partners can also be achieved by maintaining a productive tension between different frames through ‘optimal’ frame plurality – not excessive frame variety that may prevent agreements from emerging, but the retention of a select few frames and the deletion of others towards achieving a narrowing frame bandwidth. One managerial implication is that resources need not be focussed on reaching a unanimous agreement among all partners on a single mega-frame vis-à-vis a contentious issue, but can instead be used to kindle a sense of unity in diversity that allows sufficient common ground to emerge, despite the variety of actors and their positions
Symmetrical Corticobasal Syndrome Caused by a Novel c.314dup Progranulin Mutation
Corticobasal syndrome (CBS) is characterised by asymmetrical parkinsonism and cognitive impairment. The underlying pathology varies between corticobasal degeneration, progressive supranuclear palsy, Alzheimer’s disease, Creutzfeldt–Jakob disease and frontotemporal lobar degeneration sometimes in association with GRN mutations. A 61-year-old male underwent neurological examination, neuropsychological assessment, MRI, and HMPAO-SPECT at our medical centre. After his death at the age of 63, brain autopsy, genetic screening and mRNA expression analysis were performed. The patient presented with slow progressive walking disabilities, non-fluent language problems, behavioural changes and forgetfulness. His family history was negative. He had primitive reflexes, rigidity of his arms and postural instability. Later in the disease course he developed dystonia of his left leg, pathological crying, mutism and dysphagia. Neuropsychological assessment revealed prominent ideomotor and ideational apraxia, executive dysfunction, non-fluent aphasia and memory deficits. Neuroimaging showed symmetrical predominant frontoparietal atrophy and hypoperfusion. Frontotemporal lobar degeneration (FTLD)-TDP type 3 pathology was found at autopsy. GRN sequencing revealed a novel frameshift mutation c.314dup, p.Cys105fs and GRN mRNA levels showed a 50% decrease. We found a novel GRN mutation in a patient with an atypical (CBS) presentation with symmetric neuroimaging findings. GRN mutations are an important cause of CBS associated with FTLD-TDP type 3 pathology, sometimes in sporadic cases. Screening for GRN mutations should also be considered in CBS patients without a positive family history
Conceptual framework for the definition of preclinical and prodromal frontotemporal dementia
The presymptomatic stages of frontotemporal dementia (FTD) are still poorly defined and encompass a long accrual of progressive biological (preclinical) and then clinical (prodromal) changes, antedating the onset of dementia. The heterogeneity of clinical presentations and the different neuropathological phenotypes have prevented a prior clear description of either preclinical or prodromal FTD. Recent advances in therapeutic approaches, at least in monogenic disease, demand a proper definition of these predementia stages. It has become clear that a consensus lexicon is needed to comprehensively describe the stages that anticipate dementia. The goal of the present work is to review existing literature on the preclinical and prodromal phases of FTD, providing recommendations to address the unmet questions, therefore laying out a strategy for operationalizing and better characterizing these presymptomatic disease stages
- …
