335 research outputs found
Solving the stationary Liouville equation via a boundary element method
Intensity distributions of linear wave fields are, in the high frequency
limit, often approximated in terms of flow or transport equations in phase
space. Common techniques for solving the flow equations for both time dependent
and stationary problems are ray tracing or level set methods. In the context of
predicting the vibro-acoustic response of complex engineering structures,
reduced ray tracing methods such as Statistical Energy Analysis or variants
thereof have found widespread applications. Starting directly from the
stationary Liouville equation, we develop a boundary element method for solving
the transport equations for complex multi-component structures. The method,
which is an improved version of the Dynamical Energy Analysis technique
introduced recently by the authors, interpolates between standard statistical
energy analysis and full ray tracing, containing both of these methods as
limiting cases. We demonstrate that the method can be used to efficiently deal
with complex large scale problems giving good approximations of the energy
distribution when compared to exact solutions of the underlying wave equation
The Spitzer Survey of the Small Magellanic Cloud: S3MC Imaging and Photometry in the Mid- and Far-Infrared Wavebands
We present the initial results from the Spitzer Survey of the Small
Magellanic Cloud (S3MC), which imaged the star-forming body of the Small
Magellanic Cloud (SMC) in all seven MIPS and IRAC wavebands. We find that the
F_8/F_24 ratio (an estimate of PAH abundance) has large spatial variations and
takes a wide range of values that are unrelated to metallicity but
anticorrelated with 24 um brightness and F_24/F_70 ratio. This suggests that
photodestruction is primarily responsible for the low abundance of PAHs
observed in star-forming low-metallicity galaxies. We use the S3MC images to
compile a photometric catalog of ~400,000 mid- and far-infrared point sources
in the SMC. The sources detected at the longest wavelengths fall into four main
categories: 1) bright 5.8 um sources with very faint optical counterparts and
very red mid-infrared colors ([5.8]-[8.0]>1.2), which we identify as YSOs. 2)
Bright mid-infrared sources with mildly red colors (0.16<[5.8]-[8.0]<0.6),
identified as carbon stars. 3) Bright mid-infrared sources with neutral colors
and bright optical counterparts, corresponding to oxygen-rich evolved stars.
And, 4) unreddened early B stars (B3 to O9) with a large 24 um excess. This
excess is reminiscent of debris disks, and is detected in only a small fraction
of these stars (<5%). The majority of the brightest infrared point sources in
the SMC fall into groups one to three. We use this photometric information to
produce a catalog of 282 bright YSOs in the SMC with a very low level of
contamination (~7%).Comment: Accepted for publication in The Astrophysical Journal. Given the
draconian figure file-size limits implemented in astro-ph, readers are
encouraged to download the manuscript with full quality images from
http://celestial.berkeley.edu/spitzer/publications/s3mcsurvey.pd
Three-micron spectra of AGB stars and supergiants in nearby galaxies
The dependence of stellar molecular bands on the metallicity is studied using
infrared L-band spectra of AGB stars (both carbon-rich and oxygen-rich) and
M-type supergiants in the Large and Small Magellanic Clouds (LMC and SMC) and
in the Sagittarius Dwarf Spheroidal Galaxy. The spectra cover SiO bands for
oxygen-rich stars, and acetylene (C2H2), CH and HCN bands for carbon-rich AGB
stars. The equivalent width of acetylene is found to be high even at low
metallicity. The high C2H2 abundance can be explained with a high
carbon-to-oxygen (C/O) ratio for lower metallicity carbon stars. In contrast,
the HCN equivalent width is low: fewer than half of the extra-galactic carbon
stars show the 3.5micron HCN band, and only a few LMC stars show high HCN
equivalent width. HCN abundances are limited by both nitrogen and carbon
elemental abundances. The amount of synthesized nitrogen depends on the initial
mass, and stars with high luminosity (i.e. high initial mass) could have a high
HCN abundance. CH bands are found in both the extra-galactic and Galactic
carbon stars. None of the oxygen-rich LMC stars show SiO bands, except one
possible detection in a low quality spectrum. The limits on the equivalent
widths of the SiO bands are below the expectation of up to 30angstrom for LMC
metallicity. Several possible explanations are discussed. The observations
imply that LMC and SMC carbon stars could reach mass-loss rates as high as
their Galactic counterparts, because there are more carbon atoms available and
more carbonaceous dust can be formed. On the other hand, the lack of SiO
suggests less dust and lower mass-loss rates in low-metallicity oxygen-rich
stars. The effect on the ISM dust enrichment is discussed.Comment: accepted for A&
Diabetes MILES – The Netherlands: rationale, design and sample characteristics of a national survey examining the psychosocial aspects of living with diabetes in Dutch adults
Background : As the number of people with diabetes is increasing rapidly worldwide, a more thorough understanding of the psychosocial aspects of living with this condition has become an important health care priority. While our knowledge has grown substantially over the past two decades with respect to the physical, emotional and social difficulties that people with diabetes may encounter, many important issues remain to be elucidated. Under the umbrella of the Diabetes MILES (Management and Impact for Long-term Empowerment and Success) Study International Collaborative, Diabetes MILES – The Netherlands aims to examine how Dutch adults with diabetes manage their condition and how it affects their lives. Topics of special interest in Diabetes MILES - The Netherlands include subtypes of depression, Type D personality, mindfulness, sleep and sexual functioning. Methods/design : Diabetes MILES – The Netherlands was designed as a national online observational study among adults with diabetes. In addition to a main set of self-report measures, the survey consisted of five complementary modules to which participants were allocated randomly. From September to October 2011, a total of 3,960 individuals with diabetes (40% type 1, 53% type 2) completed the battery of questionnaires covering a broad range of topics, including general health, self-management, emotional well-being and contact with health care providers. People with self-reported type 1 diabetes (specifically those on insulin pump therapy) were over-represented, as were those using insulin among respondents with self-reported type 2 diabetes. People from ethnic minorities were under-represented. The sex distribution was fairly equal in the total sample, participants spanned a broad age range (19–90 years), and diabetes duration ranged from recent diagnosis to living with the condition for over fifty years. Discussion : The Diabetes MILES Study enables detailed investigation of the psychosocial aspects of living with diabetes and an opportunity to put these findings in an international context. With several papers planned resulting from a pooled Australian-Dutch dataset and data collections planned in other countries, the Diabetes MILES Study International Collaborative will contribute substantially to identifying potentially unmet needs of those living with diabetes and to inform clinical research and care across the globe. <br /
Is the meiofauna a good indicator for climate change and anthropogenic impacts?
Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
13C-NMR dereplication of complex mixtures: predicted vs experimental chemical shifts databases
Influence of Multiharmonics Excitation on Rattle Noise in Automotive Gearboxes
We consider the automotive gearbox rattle noise resulting from vibro-impacts that can occur between the idle gears under excessive velocity fluctuations of the shaft-driving gears imposed by engine torque fluctuation. Even if the rattling phenomenon has no consequence on reliability, it may be particularly annoying for vehicle interior sound quality and acoustic comfort. The main parameters governing such kind of vibrations are the excitation source associated with engine torque fluctuation which can be modeled by an imposed displacement of the driveline, the inertia of the idle gear, the drag torque acting during the free flight motion, and the impact laws. In the case of rattle, it is reasonable to assume that duration of impacts between teeth is very short compared to the excitation period. Then, these impacts are modeled by a coefficient of restitution law. The excitation source is not composed only with fundamental component but also with other harmonic components. This study presents some effects of these additional components on the dynamic response of the idle gear
The effector T cell response to influenza infection
Influenza virus infection induces a potent initial innate immune response, which serves to limit the extent of viral replication and virus spread. However, efficient (and eventual) viral clearance within the respiratory tract requires the subsequent activation, rapid proliferation, recruitment, and expression of effector activities by the adaptive immune system, consisting of antibody producing B cells and influenza-specific T lymphocytes with diverse functions. The ensuing effector activities of these T lymphocytes ultimately determine (along with antibodies) the capacity of the host to eliminate the viruses and the extent of tissue damage. In this review, we describe this effector T cell response to influenza virus infection. Based on information largely obtained in experimental settings (i.e., murine models), we will illustrate the factors regulating the induction of adaptive immune T cell responses to influenza, the effector activities displayed by these activated T cells, the mechanisms underlying the expression of these effector mechanisms, and the control of the activation/differentiation of these T cells, in situ, in the infected lungs
Is the meiofauna a good indicator for climate change and anthropogenic impacts?
Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
Measuring root system traits of wheat in 2D images to parameterize 3D root architecture models
Background and aimsThe main difficulty in the use of 3D root architecture models is correct parameterization. We evaluated distributions of the root traits inter-branch distance, branching angle and axial root trajectories from contrasting experimental systems to improve model parameterization.MethodsWe analyzed 2D root images of different wheat varieties (Triticum aestivum) from three different sources using automatic root tracking. Model input parameters and common parameter patterns were identified from extracted root system coordinates. Simulation studies were used to (1) link observed axial root trajectories with model input parameters (2) evaluate errors due to the 2D (versus 3D) nature of image sources and (3) investigate the effect of model parameter distributions on root foraging performance.ResultsDistributions of inter-branch distances were approximated with lognormal functions. Branching angles showed mean values <90°. Gravitropism and tortuosity parameters were quantified in relation to downwards reorientation and segment angles of root axes. Root system projection in 2D increased the variance of branching angles. Root foraging performance was very sensitive to parameter distribution and variance.Conclusions2D image analysis can systematically and efficiently analyze root system architectures and parameterize 3D root architecture models. Effects of root system projection (2D from 3D) and deflection (at rhizotron face) on size and distribution of particular parameters are potentially significant
- …
