577 research outputs found
Problèmes posés par l'interprétation thématique des images et des données numériques Landsat du Sud de la Tunisie (Expérience AZORTU)
An ecological assessment of renewable resources for rural agricultural development in the Western mediterranean coastal region of Egypt : case study : El Omayed test-area
Optical Morphology Evolution of Infrared Luminous Galaxies in GOODS-N
We combine optical morphologies and photometry from HST, redshifts from Keck,
and mid-infrared luminosities from Spitzer for an optically selected sample
of~800 galaxies in GOODS-N to track morphology evolution of infrared luminous
galaxies (LIRGs) since redshift z=1. We find a 50% decline in the number of
LIRGs from z~1 to lower redshift, in agreement with previous studies. In
addition, there is evidence for a morphological evolution of the populations of
LIRGs. Above z=0.5, roughly half of all LIRGs are spiral, the
peculiar/irregular to spiral ratio is ~0.7, and both classes span a similar
range of L_{IR} and M_B. At low-z, spirals account for one-third of LIRGs, the
peculiar to spiral fraction rises to 1.3, and for a given M_B spirals tend to
have lower IR luminosity than peculiars. Only a few percent of LIRGs at any
redshift are red early-type galaxies. For blue galaxies (U-B < 0.2), M_B is
well correlated with log(L_{IR}) with an RMS scatter (about a bivariate linear
fit) of ~0.25 dex in IR luminosity. Among blue galaxies that are brighter than
M_B = -21, 75% are LIRGs, regardless of redshift. These results can be
explained by a scenario in which at high-z, most large spirals experience an
elevated star formation rate as LIRGs. Gas consumption results in a decline of
LIRGs, especially in spirals, to lower redshifts.Comment: 6 pages, 2 figures, accepted ApJ
Dynamique de systèmes écologiques de la zone aride : application à l'aménagement sur des bases écologiques d'une zone de la Tunisie présaharienne
NGC6240: extended CO structures and their association with shocked gas
We present deep CO observations of NGC6240 performed with the IRAM Plateau de
Bure Interferometer (PdBI). NGC6240 is the prototypical example of a major
galaxy merger in progress, caught at an early stage, with an extended,
strongly-disturbed butterfly-like morphology and the presence of a heavily
obscured active nucleus in the core of each progenitor galaxy. The CO line
shows a skewed profile with very broad and asymmetric wings detected out to
velocities of -600 km/s and +800 km/s with respect to the systemic velocity.
The PdBI maps reveal the existence of two prominent structures of blueshifted
CO emission. One extends eastward, i.e. approximately perpendicular to the line
connecting the galactic nuclei, over scales of ~7 kpc and shows velocities up
to -400 km/s. The other extends southwestward out to ~7 kpc from the nuclear
region, and has a velocity of -100 km/s with respect to the systemic one.
Interestingly, redshifted emission with velocities 400 to 800 km/s is detected
around the two nuclei, extending in the east-west direction, and partly
overlapping with the eastern blue-shifted structure, although tracing a more
compact region of size ~1.7 kpc. The overlap between the southwestern CO blob
and the dust lanes seen in HST images, which are interpreted as tidal tails,
indicates that the molecular gas is deeply affected by galaxy interactions. The
eastern blueshifted CO emission is co-spatial with an Halpha filament that is
associated with strong H2 and soft X-ray emission. The analysis of Chandra
X-ray data provides strong evidence for shocked gas at the position of the
Halpha emission. Its association with outflowing molecular gas supports a
scenario where the molecular gas is compressed into a shock wave that
propagates eastward from the nuclei. If this is an outflow, the AGN are likely
the driving force.Comment: Accepted for publication in A&
- …
