1,773 research outputs found

    Lead isotope analysis of melt inclusions by LA-MC-ICP-MS

    Get PDF
    This study provides a method for measuring Pb isotopes of olivine-hosted melt inclusions with diameters larger than 40 micrometers.</p

    Stability and shape analysis of relative equilibrium for three-spacecraft electromagnetic formation

    Get PDF
    AbstractThe invariant shapes for close formation flying with inter-craft electromagnetic force ensure several potential space applications. However, the 6-DOF relative equilibrium problem has not been systematically investigated. This paper mainly analyzes the invariant shapes of relative equilibrium for the three-spacecraft electromagnetic formation, and studies the families of invariant shape solutions with real and constant magnetic moments as well as their linear stability. The problem is examined based on the full nonlinear coupled dynamic models for collinear and general triangular configurations. The relative equilibrium conditions are analyzed to determine whether an invariant shape do exist, and the corresponding families of invariant shape solutions are identified for static and spinning configurations respectively. Finally, the linear stability of such invariant shapes is numerically discussed, which have shown that most invariant shapes are unstable and controllable

    Genome maps across 26 human populations reveal population-specific patterns of structural variation.

    Get PDF
    Large structural variants (SVs) in the human genome are difficult to detect and study by conventional sequencing technologies. With long-range genome analysis platforms, such as optical mapping, one can identify large SVs (&gt;2 kb) across the genome in one experiment. Analyzing optical genome maps of 154 individuals from the 26 populations sequenced in the 1000 Genomes Project, we find that phylogenetic population patterns of large SVs are similar to those of single nucleotide variations in 86% of the human genome, while ~2% of the genome has high structural complexity. We are able to characterize SVs in many intractable regions of the genome, including segmental duplications and subtelomeric, pericentromeric, and acrocentric areas. In addition, we discover ~60 Mb of non-redundant genome content missing in the reference genome sequence assembly. Our results highlight the need for a comprehensive set of alternate haplotypes from different populations to represent SV patterns in the genome

    Expression pattern and activity of six glutelin gene promoters in transgenic rice*

    Get PDF
    The shortage of strong endosperm-specific expression promoters for driving the expression of recombinant protein genes in cereal endosperm is a major limitation in obtaining the required level and pattern of expression. Six promoters of seed storage glutelin genes (GluA-1, GluA-2, GluA-3, GluB-3, GluB-5, and GluC) were isolated from rice (Oryza sativa L.) genomic DNA by PCR. Their spatial and temporal expression patterns and expression potential in stable transgenic rice plants were examined with β-glucuronidase (GUS) used as a reporter gene. All the promoters showed the expected spatial expression within the endosperm. The GluA-1, GluA-2, and GluA-3 promoters directed GUS expression mainly in the outer portion (peripheral region) of the endosperm. The GluB-5 and GluC promoters directed GUS expression in the whole endosperm, with the latter expressed almost evenly throughout the whole endosperm, a feature different from that of other rice glutelin gene promoters. The GluB-3 promoter directed GUS expression solely in aleurone and subaleurone layers. Promoter activities examined during seed maturation showed that the GluC promoter had much higher activity than the other promoters. These promoters are ideal candidates for achieving gene expression for multiple purposes in monocot endosperm but avoid promoter homology-based gene silencing. The GluC promoter did not contain the endosperm specificity-determining motifs GCN4, AACA, and the prolamin-box, which suggests the existence of additional regulatory mechanism in determining endosperm specificity

    The Lx-T and Lx-sigma Relationships for Galaxy Clusters Revisited

    Full text link
    The relationships between the X-ray determined bolometric luminosity Lx, the temperature T of the intracluster gas, and the optical measured velocity dispersion sigma of the cluster galaxies are updated for galaxy clusters using the largest sample of 256 clusters drawn from literature. The newly established relationships, based on the doubly weighted orthogonal distance regression (ODR) method, are justified by both their self-consistency and co-consistency, which can then be used to test the theoretical models of cluster formation and evolution. The observationally determined Lx-T and Lx-sigma relationships, LxT2.72±0.05σ5.24±0.29L_x\propto T^{2.72\pm0.05}\propto \sigma^{5.24\pm0.29}, are marginally consistent with those predicted in the scenario that both intracluster gas and galaxies are in isothermal and hydrostatic equilibrium with the underlying gravitational potential of clusters. A comparison between these observed and predicted Lx-T relationships also suggests that the mean cluster baryon fraction fb remains approximately constant among different clusters, fb0.17f_b\approx0.17, which gives rise to a low-mass density universe of Ωm0.3\Omega_m\approx0.3.Comment: 34 pages, 7 figures, 2 tables, accepted for publication in Ap

    Silk-Fibroin/Methacrylated Gellan Gum Hydrogel as an novel scaffold for application in meniscus cell-based tissue engineering

    Get PDF
    Introduction: Knee meniscus injury is highly prevalent and there is a demand for new cost-effective treatment solutions. Tissue engineering (TE) and regenerative medicine strategies using acellular scaffolds are being used in clinical application for total or partial meniscus replacement [1]. Although this strategy has been considered as a safe and promising approach, progressive volume reduction of the implant and early failure have been described. Advances in the field of meniscus TE are required and greatly depend on increased knowledge of meniscus biology, improvement of biomaterials and cell-based therapies [2]. Advanced scaffolds for meniscus TE should possess adequate mechanics, biodegradability and biocompatibility, and also be able to mimic and preserve the asymmetric vascular network of this complex tissue, i.e. enable controlling the segmental vascularization during the regeneration process. Silk fibroin scaffolds derived from Bombyx mori cocoon have been recognized as a versatile biomaterial for application in meniscus TE [3]. The purpose of this study is to: 1) contribute to the knowledge of meniscus aiming future clinical applications (namely, the aspects dealing with the characterization of cellular phenotypes and density, biomechanics and extracellular matrix composition) and 2) to develop an alternative and viable silk fibroin scaffold possessing adequate properties for either use in acellular or cellular approaches for partial and/or total meniscus replacement, and combine it with the methacrylated gellan gum hydrogel (iGG-MA) hydrogel, which is able to prevent the ingrowth of endothelial cells and blood vessels into the hydrogels [4,5]. Patients & Methods: Morphologically intact menisci were collected from 44 human donors (12 male, 32 female). All menisci (30 lateral and 14 medial) were divided into anterior, middle and posterior segments prior to mechanical, biological or histological characterization. Human meniscus cells (HMC´s) were isolated using an enzymatic standard protocol. HMC´s phenotype was characterized by flow cytometry analysis. Haematoxylin and eosin (H&E), safranin-O and collagen I staining were performed for segmental characterization of the extracellular matrix. For the evaluation of the viscoelastic properties, dynamic mechanical analysis (DMA) was performed using fresh tissue samples. The three segments of menisci were cut in cylindrical shapes with 4 mm diameter and analyzed at 37ºC in PBS (pH 7.4). The microstructure of freeze-dried meniscus was investigated by micro-computed tomography (micro-CT) analysis. Silk-based scaffolds (10 and 12 wt%) were produced by means of combining salt leaching and freeze-drying methods [3], in order to match human tissue biological and biomechanical features. HMC’s were seeded onto the different silk scaffolds at a cell density of 5x104 cells/disc. Then, the cell-laden scaffolds were cultured in static conditions, for times of culturing up to 21 days. After specific times of culturing (from 1 day up to 21 days), HMC´s adhesion, viability and proliferation were investigated by scanning electron microscopy (SEM), calcein-AM assay and DNA quantification tests, respectively. In addition, the mechanical properties of the cell-loaded scaffolds were evaluated by DMA. The HMC’s-laden hydrogel/silk scaffolds were produced by encapsulating the HMC’s into a 2 wt% iGG-MA hydrogel, followed by impregnation onto the 12 wt% silk scaffold. A chorioallantoic membrane (CAM) assay was used to investigate in vivo the control of segmental vascularization of the acellular and cell-laden hydrogel/silk scaffolds by the effect of iGG-MA hydrogel, until day 14 of embryonic development. Results & Discussion: The biological characterization of this meniscus tissue, although not yet completely accomplished, has evolved significantly in the last few years. In this work, DMA analysis has shown that medial meniscus has significantly higher stiffness (E' and Tan d) than lateral meniscus. There is also significant regional variation form anterior to posterior menisci segments regarding biomechanical features. Age, gender and bone mass index (BMI) also influences meniscus stiffness. The FACS analysis revealed that cells isolated from the human meniscus are a mixed population of cells, i.e. fibrochondrocyte-like and MSCs (cells are positive for CD105, CD73 and CD90, and lack CD34 and CD45). HMC’s maintained their phenotype for 21 days when cultured in tissue culture polystyrene plate (2D). The micro-CT analysis revealed that the human freeze-dried meniscus possessed a mean porosity of 58.0±20.3% and interconectivity of 41.9%±53.7. The mean pore size and trabeculae thickness was 220.7±111.5 µm and 159.7±78.6 µm, respectively. The knowledge arising from the present study allowed us to develop a novel polymeric scaffold made of silk fibroin, which was subsequently characterized without cells and after cell-loading. SEM analysis revealed that the HMC´s adhered to the surface of the scaffolds. The viability assay and DNA quantification showed that HMC´s were viable and proliferated well when cultured onto both silk-10 and silk-12 scaffolds, until 21 days. DMA analysis has shown that the moduli of the acellular scaffolds immersed in culture medium for 14 days were 27.6 ± 7.9 kPa and 61.1 ± 0.4 at 10 Hz, for silk-10 e silk-12, respectively. By its turn, the moduli determined at 10 Hz of the cell-laden scaffolds cultured after 14 days of culturing were 48.2± 19.8 and 140.1 ± 15.6 kPa, for silk-10 and silk-12, respectively. The in vivo study allowed investigating the number of macroscopic blood vessels converging to the implants. The evaluation of possible inflammation and endothelial cells ingrowths was performed by histological (H&E staining) and immunohistochemical methods (SNA-lectin staining). Results have shown that iGG-MA hydrogel prevented the endothelial cells adhesion and blood vessels infiltration into the HMC’s hydrogel/silk scaffolds, after 4 days of implantation, even in the presence of VEGF
    corecore