643 research outputs found
Influence of excipients on spray-dried powders for inhalation
Two areas attracting considerable attention when developing effective pulmonary drug delivery systems include the improvement of aerosolisation efficiency of the inhaled formulation and the controlled release of drug from the formulation following deposition within the lung. In this study, four saccharides were employed as excipients in the preparation of spray-dried powder formulations for the pulmonary drug delivery. Beta-cyclodextrin-, starch-, and sodium carboxymethylcellulose (NaCMC)-based spray-dried powders showed a significant (one-way ANOVA, Duncan's test, p < 0.05) increase in lower stage drug deposition in the Next Generation Impactor (NGI) when compared to lactose-based spray-dried powders. Furthermore, NaCMC-based spray-dried powder formulations exhibited a sustained drug release profile in dissolution testing; approximately 80% of salbutamol sulphate was released after an hour, whereas drug from the lactose-based spray-dried powder formulation was released within 5 min. Our results clearly demonstrate that the inclusion of NaCMC in spray-dried powder formulations increases the aerosolisation efficiency of the powder and also offers the potential for sustained drug release, which may be of benefit in the treatment of local and systemic conditions
Intra-arterial nitroglycerin as directed acute treatment in experimental ischemic stroke
BACKGROUND: Nitroglycerin (also known as glyceryl trinitrate (GTN)), a vasodilator best known for treatment of ischemic heart disease, has also been investigated for its potential therapeutic benefit in ischemic stroke. The completed Efficacy of Nitric Oxide in Stroke trial suggested that GTN has therapeutic benefit with acute (within 6 hours) transdermal systemic sustained release therapy. OBJECTIVE: To examine an alternative use of GTN as an acute therapy for ischemic stroke following successful recanalization. METHODS: We administered GTN IA following transient middle cerebral artery occlusion in mice. Because no standard dose of GTN is available following emergent large vessel occlusion, we performed a dose-response (3.12, 6.25, 12.5, and 25 µg/µL) analysis. Next, we looked at blood perfusion (flow) through the middle cerebral artery using laser Doppler flowmetry. Functional outcomes, including forced motor movement rotor rod, were assessed in the 3.12, 6.25, and 12.5 µg/µL groups. Histological analysis was performed using cresyl violet for infarct volume, and glial fibrillary activating protein (GFAP) and NeuN immunohistochemistry for astrocyte activation and mature neuron survival, respectively. RESULTS: Overall, we found that acute post-stroke IA GTN had little effect on vessel dilatation after 15 min. Functional analysis showed a significant difference between GTN (3.12 and 6.25 µg/µL) and control at post-stroke day 1. Histological measures showed a significant reduction in infarct volume and GFAP immunoreactivity and a significant increase in NeuN. CONCLUSIONS: These results demonstrate that acute IA GTN is neuroprotective in experimental ischemic stroke and warrants further study as a potentially new stroke therapy
Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin
The potential of amphiphilic chitosan formed by grafting octanoyl chains on the chitosan backbone for pulmonary delivery of levofloxacin has been studied. The success of polymer synthesis was confirmed using FT-IR and NMR, whilst antimicrobial activity was assessed against Pseudomonas aeruginosa. Highly dispersible dry powders for delivery as aerosols were prepared with different amounts of chitosan and octanoyl chitosan to study the effect of hydrophobic modification and varying concentration of polymer on aerosolization of drug. Powders were prepared by spray-drying from an aqueous solution containing levofloxacin and chitosan/amphiphilic octanoyl chitosan. L-leucine was also used to assess its effect on aerosolization. Following spray-drying, the resultant powders were characterized using scanning electron microscopy, laser diffraction, dynamic light scattering, HPLC, differential scanning calorimetry, thermogravimetric analysis and X-ray powder diffraction. The in vitro aerosolization profile was determined using a Next Generation Impactor, whilst in vitro antimicrobial assessment was performed using MIC assay. Microparticles of chitosan have the property of mucoadhesion leading to potential increased residence time in the pulmonary mucus, making it important to test the toxicity of these formulations. In-vitro cytotoxicity evaluation using MTT assay was performed on A549 cell line to determine the toxicity of formulations and hence feasibility of use. The MTT assay confirmed that the polymers and the formulations were non-cytotoxic. Hydrophobically modifying chitosan showed significantly lower MIC (4-fold) than the commercial chitosan against P. aeruginosa. The powders generated were of suitable aerodynamic size for inhalation having a mass median aerodynamic diameter less than 4.5 lm for formulations containing octanoyl chitosan. These highly dispersible powders have minimal moisture adsorption and hence an emitted dose of more than 90% and a fine particle fraction (FPF) of 52%. Powders with non-modified chitosan showed lower dispersibility, with an emitted dose of 72% and FPF of 20%, as a result of high moisture adsorption onto the chitosan matrix leading to cohesiveness and subsequently decreased dispersibility
Intra-arterial nitroglycerin as directed acute treatment in experimental ischemic stroke
Background: Nitroglycerin (also known as glyceryl trinitrate (GTN)), a vasodilator best known for treatment of ischemic heart disease, has also been investigated for its potential therapeutic benefit in ischemic stroke. The completed Efficacy of Nitric Oxide in Stroke trial suggested that GTN has therapeutic benefit with acute (within 6 hours) transdermal systemic sustained release therapy.
Objective: To examine an alternative use of GTN as an acute therapy for ischemic stroke following successful recanalization.
Methods: We administered GTN IA following transient middle cerebral artery occlusion in mice. Because no standard dose of GTN is available following emergent large vessel occlusion, we performed a dose–response (3.12, 6.25, 12.5, and 25 .ig/.iL) analysis. Next, we looked at blood perfusion (flow) through the middle cerebral artery using laser Doppler flowmetry. Functional outcomes, including forced motor movement rotor rod, were assessed in the 3.12, 6.25, and 12.5 .ig/.iL groups. Histological analysis was performed using cresyl violet for infarct volume, and glial fibrillary activating protein (GFAP) and NeuN immunohistochemistry for astrocyte activation and mature neuron survival, respectively.
Results: Overall, we found that acute post-stroke IA GTN had little effect on vessel dilatation after 15 min. Functional analysis showed a significant difference between GTN (3.12 and 6.25 .ig/.iL) and control at post-stroke day 1. Histological measures showed a significant reduction in infarct volume and GFAP immunoreactivity and a significant increase in NeuN.
Conclusions: These results demonstrate that acute IA GTN is neuroprotective in experimental ischemic stroke and warrants further study as a potentially new stroke therapy
A BIOMECHANICAL COMPARISON OF THE LOWER EXTREMITY DURING FRONT AND BACK SQUATS IN HEALTHY TRAINED INDIVIDUALS
The two most common forms of the squat exercise are the back squat (BS) and the front squat (FS). While used interchangeably, there is little empirical evidence to inform the strength professional as to which variation may best benefit an athlete. Recently, Gullett et al. (2008) suggested that the lower compressive forces in the knee during a FS may make this variation the primary training choice. The purpose of this research is to compare the forces and moments at the hip, knee, and ankle during a BS and a FS in healthy trained participants
Olaparib combined with abiraterone in patients with metastatic castration-resistant prostate cancer: a randomised, double-blind, placebo-controlled, phase 2 trial
Background Patients with metastatic castration-resistant prostate cancer and homologous recombination repair (HRR) mutations have a better response to treatment with the poly(ADP-ribose) polymerase inhibitor olaparib than patients without HRR mutations. Preclinical data suggest synergy between olaparib and androgen pathway inhibitors. We aimed to assess the efficacy of olaparib plus the androgen pathway inhibitor abiraterone in patients with metastatic castration-resistant prostate cancer regardless of HRR mutation status. Methods We carried out this double-blind, randomised, placebo-controlled phase 2 trial at 41 urological oncology sites in 11 countries across Europe and North America. Eligible male patients were aged 18 years or older with metastatic castration-resistant prostate cancer who had previously received docetaxel and were candidates for abiraterone treatment. Patients were excluded if they had received more than two previous lines of chemotherapy, or had previous exposure to second-generation antihormonal drugs. Patients were randomly assigned (1:1) using an interactive voice or web response system, without stratification, to receive oral olaparib 300 mg twice daily or placebo. All patients received oral abiraterone 1000 mg once daily and prednisone or prednisolone 5 mg twice daily. Patients and investigators were masked to treatment allocation. The primary endpoint was investigator-assessed radiographic progression-free survival (rPFS; based on Response Evaluation Criteria in Solid Tumors version 1.1 and Prostate Cancer Clinical Trials Working Group 2 criteria). Efficacy analyses were done in the intention-to-treat population, which included all randomly assigned patients, and safety analyses included all patients who received at least one dose of olaparib or placebo. This trial is registered with ClinicalTrials.gov, number NCT01972217, and is no longer recruiting patients. Findings Between Nov 25, 2014, and July 14, 2015, 171 patients were assessed for eligibility. Of those, 142 patients were randomly assigned to receive olaparib and abiraterone (n=71) or placebo and abiraterone (n=71). The clinical cutoff date for the final analysis was Sept 22, 2017. Median rPFS was 13·8 months (95% CI 10·8–20·4) with olaparib and abiraterone and 8·2 months (5·5–9·7) with placebo and abiraterone (hazard ratio [HR] 0·65, 95% CI 0·44–0·97, p=0·034). The most common grade 1–2 adverse events were nausea (26 [37%] patients in the olaparib group vs 13 [18%] patients in the placebo group), constipation (18 [25%] vs eight [11%]), and back pain (17 [24%] vs 13 [18%]). 38 (54%) of 71 patients in the olaparib and abiraterone group and 20 (28%) of 71 patients in the placebo and abiraterone group had grade 3 or worse adverse events, including anaemia (in 15 [21%] of 71 patients vs none of 71), pneumonia (four [6%] vs three [4%]), and myocardial infarction (four [6%] vs none). Serious adverse events were reported by 24 (34%) of 71 patients receiving olaparib and abiraterone (seven of which were related to treatment) and 13 (18%) of 71 patients receiving placebo and abiraterone (one of which was related to treatment). One treatment-related death (pneumonitis) occurred in the olaparib and abiraterone group. Interpretation Olaparib in combination with abiraterone provided clinical efficacy benefit for patients with metastatic castration-resistant prostate cancer compared with abiraterone alone. More serious adverse events were observed in patients who received olaparib and abiraterone than abiraterone alone. Our data suggest that the combination of olaparib and abiraterone might provide an additional clinical benefit to a broad population of patients with metastatic castration-resistant prostate cancer
Poly(Glycerol Adipate-co-ω-Pentadecalactone) Spray-Dried Microparticles as Sustained Release Carriers for Pulmonary Delivery
Purpose The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery. Methods Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers ( L -arginine and L -leucine) (0.5–1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. Results Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79 ± 3.24), fine particle dose (FPD) (14.42 ± 1.57 μg), with a mass median aerodynamic diameter (MMAD) 2.86 ± 0.24 μm. However, L -leucine was significantly superior in enhancing the aerosolization performance ( L- arginine:%FPF 27.61 ± 4.49–26.57 ± 1.85; FPD 12.40 ± 0.99–19.54 ± 0.16 μg and MMAD 2.18 ± 0.35–2.98 ± 0.25 μm, L -leucine:%FPF 36.90 ± 3.6–43.38 ± 5.6; FPD 18.66 ± 2.90–21.58 ± 2.46 μg and MMAD 2.55 ± 0.03–3.68 ± 0.12 μm). Incorporating L -leucine (1.5%w/w) reduced the burst release (24.04 ± 3.87%) of SF compared to unmodified formulations (41.87 ± 2.46%), with both undergoing a square root of time (Higuchi’s pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with L -leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o- cell lines, resulted in cell viability of 85.57 ± 5.44 and 60.66 ± 6.75%, respectively, after 72 h treatment. Conclusion The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery
- …
