581 research outputs found
The Stripe 82 Massive Galaxy Project III: A Lack of Growth Among Massive Galaxies
The average stellar mass (Mstar) of high-mass galaxies (Mstar > 3e11 Msun) is
expected to grow by ~30% since z~1, largely through ongoing mergers that are
also invoked to explain the observed increase in galaxy sizes. Direct evidence
for the corresponding growth in stellar mass has been elusive, however, in part
because the volumes sampled by previous redshift surveys have been too small to
yield reliable statistics. In this work, we make use of the Stripe 82 Massive
Galaxy Catalog to build a mass-limited sample of 41,770 galaxies (Mstar >
1.6e11) with optical to near-IR photometry and a large fraction (>55%) of
spectroscopic redshifts. Our sample spans 139 square degrees, significantly
larger than most previous efforts. After accounting for a number of potential
systematic errors, including the effects of Mstar scatter, we measure galaxy
stellar mass functions over 0.3 < z < 0.65 and detect no growth in the typical
Mstar of massive galaxies with an uncertainty of 9%. This confidence level is
dominated by uncertainties in the star formation history assumed for Mstar
estimates, although our inability to characterize low surface-brightness
outskirts may be the most important limitation of our study. Even among these
high-mass galaxies, we find evidence for differential evolution when splitting
the sample by recent star formation (SF) activity. While low-SF systems appear
to become completely passive, we find a mostly sub-dominant population of
galaxies with residual, but low rates of star formation (~1 Msun/yr) number
density does not evolve. Interestingly, these galaxies become more prominent at
higher Mstar, representing ~10% of all galaxies at Mstar ~ 1e12 Msun and
perhaps dominating at even larger masses.Comment: Accepted in Ap
The effect of Warm Dark Matter on galaxy properties: constraints from the stellar mass function and the Tully-Fisher relation
In this paper we combine high resolution N-body simulations with a semi
analytical model of galaxy formation to study the effects of a possible Warm
Dark Matter (WDM) component on the observable properties of galaxies. We
compare three WDM models with a dark matter mass of 0.5, 0.75 and 2.0 keV, with
the standard Cold Dark Matter case. For a fixed set of parameters describing
the baryonic physics the WDM models predict less galaxies at low (stellar)
masses, as expected due to the suppression of power on small scales, while no
substantial difference is found at the high mass end. However these differences
in the stellar mass function, vanish when different set of parameters are used
to describe the (largely unknown) galaxy formation processes. We show that is
possible to break this degeneracy between DM properties and the
parameterization of baryonic physics by combining observations on the stellar
mass function with the Tully-Fisher relation (the relation between stellar mass
and the rotation velocity at large galactic radii as probed by resolved HI
rotation curves). WDM models with a too warm candidate (m<0.75 keV) cannot
simultaneously reproduce the stellar mass function and the Tully-Fisher
relation. We conclude that accurate measurements of the galaxy stellar mass
function and the link between galaxies and dark matter haloes down to the very
low-mass end can give very tight constraints on the nature of DM candidates.Comment: 8 pages, 5 figures, minor changes, accepted for publication on Ap
A 2.5% measurement of the growth rate from small-scale redshift space clustering of SDSS-III CMASS galaxies
We perform the first fit to the anisotropic clustering of SDSS-III CMASS DR10
galaxies on scales of ~ 0.8 - 32 Mpc/h. A standard halo occupation distribution
model evaluated near the best fit Planck LCDM cosmology provides a good fit to
the observed anisotropic clustering, and implies a normalization for the
peculiar velocity field of M ~ 2 x 10^13 Msun/h halos of f*sigma8(z=0.57) =
0.450 +/- 0.011. Since this constraint includes both quasi-linear and
non-linear scales, it should severely constrain modified gravity models that
enhance pairwise infall velocities on these scales. Though model dependent, our
measurement represents a factor of 2.5 improvement in precision over the
analysis of DR11 on large scales, f*sigma8(z=0.57) = 0.447 +/- 0.028, and is
the tightest single constraint on the growth rate of cosmic structure to date.
Our measurement is consistent with the Planck LCDM prediction of 0.480 +/-
0.010 at the ~1.9 sigma level. Assuming a halo mass function evaluated at the
best fit Planck cosmology, we also find that 10% of CMASS galaxies are
satellites in halos of mass M ~ 6 x 10^13 Msun/h. While none of our tests and
model generalizations indicate systematic errors due to an insufficiently
detailed model of the galaxy-halo connection, the precision of these first
results warrant further investigation into the modeling uncertainties and
degeneracies with cosmological parameters.Comment: 24 pages, 20 figures, submitted to MNRAS. v2 is 27 pages, 23 figures,
accepted by MNRA
Galaxy-Mass Correlations on 10 Mpc Scales in the Deep Lens Survey
We examine the projected correlation of galaxies with mass from small scales
(<few hundred kpc) where individual dark matter halos dominate, out to 15 Mpc
where correlated large-scale structure dominates. We investigate these profiles
as a function of galaxy luminosity and redshift. Selecting 0.8 million galaxies
in the Deep Lens Survey, we use photometric redshifts and stacked weak
gravitational lensing shear tomography out to radial scales of 1 degree from
the centers of foreground galaxies. We detect correlated mass density from
multiple halos and large-scale structure at radii larger than the virial
radius, and find the first observational evidence for growth in the galaxy-mass
correlation on 10 Mpc scales with decreasing redshift and fixed range of
luminosity. For a fixed range of redshift, we find a scaling of projected halo
mass with rest-frame luminosity similar to previous studies at lower redshift.
We control systematic errors in shape measurement and photometric redshift,
enforce volume completeness through absolute magnitude cuts, and explore
residual sample selection effects via simulations.Comment: 13 pages, 9 figures, re-submitted to ApJ after addressing referee
comment
Source Selection for Cluster Weak Lensing Measurements in the Hyper Suprime-Cam Survey
We present optimized source galaxy selection schemes for measuring cluster
weak lensing (WL) mass profiles unaffected by cluster member dilution from the
Subaru Hyper Suprime-Cam Strategic Survey Program (HSC-SSP). The ongoing
HSC-SSP survey will uncover thousands of galaxy clusters to . In
deriving cluster masses via WL, a critical source of systematics is
contamination and dilution of the lensing signal by cluster {members, and by
foreground galaxies whose photometric redshifts are biased}. Using the
first-year CAMIRA catalog of 900 clusters with richness larger than 20
found in 140 deg of HSC-SSP data, we devise and compare several
source selection methods, including selection in color-color space (CC-cut),
and selection of robust photometric redshifts by applying constraints on their
cumulative probability distribution function (PDF; P-cut). We examine the
dependence of the contamination on the chosen limits adopted for each method.
Using the proper limits, these methods give mass profiles with minimal dilution
in agreement with one another. We find that not adopting either the CC-cut or
P-cut methods results in an underestimation of the total cluster mass
() and the concentration of the profile (). The level of
cluster contamination can reach as high as at
Mpc/ for low-z clusters without cuts, while employing either the P-cut or
CC-cut results in cluster contamination consistent with zero to within the 0.5%
uncertainties. Our robust methods yield a detection of the
stacked CAMIRA surface mass density profile, with a mean mass of
.Comment: 19 pages, 4 tables, 12 figures, accepted to PASJ special issu
Reproducing the Stellar Mass/Halo Mass Relation in Simulated LCDM Galaxies: Theory vs Observational Estimates
We examine the present-day total stellar-to-halo mass (SHM) ratio as a
function of halo mass for a new sample of simulated field galaxies using fully
cosmological, LCDM, high resolution SPH + N-Body simulations.These simulations
include an explicit treatment of metal line cooling, dust and self-shielding,
H2 based star formation and supernova driven gas outflows. The 18 simulated
halos have masses ranging from a few times 10^8 to nearly 10^12 solar masses.
At z=0 our simulated galaxies have a baryon content and morphology typical of
field galaxies. Over a stellar mass range of 2.2 x 10^3 to 4.5 x 10^10 solar
masses, we find extremely good agreement between the SHM ratio in simulations
and the present-day predictions from the statistical Abundance Matching
Technique presented in Moster et al. (2012). This improvement over past
simulations is due to a number systematic factors, each decreasing the SHM
ratios: 1) gas outflows that reduce the overall SF efficiency but allow for the
formation of a cold gas component 2) estimating the stellar masses of simulated
galaxies using artificial observations and photometric techniques similar to
those used in observations and 3) accounting for a systematic, up to 30 percent
overestimate in total halo masses in DM-only simulations, due to the neglect of
baryon loss over cosmic times. Our analysis suggests that stellar mass
estimates based on photometric magnitudes can underestimate the contribution of
old stellar populations to the total stellar mass, leading to stellar mass
errors of up to 50 percent for individual galaxies. These results highlight the
importance of using proper techniques to compare simulations with observations
and reduce the perceived tension between the star formation efficiency in
galaxy formation models and in real galaxies.Comment: Submitted to ApJ 9 pages, 5 figure
The stellar content of the COSMOS field as derived from morphological and SED based gtar/galaxy Separation
We report on the stellar content of the COSMOS two degree field, as derived
from a rigorous star/galaxy separation approach developed for using stellar
sources to define the point spread function variation map used in a study of
weak galaxy lensing. The catalog obtained in one filter from the ACS (Advanced
Camera for Survey on the Hubble Space Telescope) is cross-identified with
ground based multi-wavelength catalogs. The classification is reliable to
magnitude and the sample is complete even fainter. We construct a
color-magnitude diagram and color histograms and compare them with predictions
of a standard model of population synthesis. We find features corresponding to
the halo subdwarf main sequence turnoff, the thick disk, and the thin disk.
This data set provides constraints on the thick disk and spheroid density laws
and on the IMF at low mass. We find no evidence of a sharp spheroid edge out to
this distance. We identify a blue population of white dwarfs with counts that
agree with model predictions. We find a hint for a possible slight stellar
overdensity at about 22-34 kpc but the data are not strong enough at present to
claim detection of a stream feature in the halo (abridged).Comment: 32 pages, 13 figures, accepted in APJ Suppl COSMOS special issue,
replaced by larger figures. A full resolution figure preprint can be found at
ftp://ftp.obs-besancon.fr/pub/outgoing/annie/star-cosmos.pd
On the evolution of environmental and mass properties of strong lens galaxies in COSMOS
Among the 100 strong lens candidates found in the COSMOS field, 20 with
redshifts in the range [0.34,1.13], feature multiple images of background
sources. Using the multi-wavelength coverage of the field and its spectroscopic
follow-up, we characterize the evolution with redshift of the environment and
of the dark-matter (DM) fraction of the lens galaxies. We present new redshift
of the strong lens candidates. The lens environment is characterized by the
projected 10 closest galaxies around each lens and by the number of galaxies
with a projected distance less than 1Mpc at the lens galaxy redshift. In both
cases, we perform similar measurements on a control sample of twin non-lens
early type galaxies (ETGs). In addition, we identify group members and field
galaxies in the X-ray and optical catalogs of galaxy groups. From those
catalogs, we measure the external shear contribution at the lens galaxy
positions. The systems are then modeled using a SIE plus the external shear due
to the groups. We observe that the average stellar mass of lens galaxies
increases with z and that the environment of lens galaxies is compatible with
that of the twins. During the lens modeling, we notice that, when let free, the
external shear points in a direction which is the mean direction of the
external shear due to groups and of the closest galaxy to the lens. We notice
that the DM fraction of the lens galaxies within the Einstein radius decreases
as the redshift increases. Given these, we conclude that, while the environment
of lens galaxies is compatible with that of non-lens ETGS, their mass
properties evolves significantly with redshift: it is still not clear whether
this advocates in favor of a stronger lensing bias toward massive objects at
high redshift or is simply representative of the high proportion of massive and
high stellar density galaxies at high redshift.Comment: Accepted for publication in A&A. Significant modifications in the
paper but similar conclusion
Connecting massive galaxies to dark matter halos in BOSS - I. Is galaxy color a stochastic process in high-mass halos?
We use subhalo abundance matching (SHAM) to model the stellar mass function
(SMF) and clustering of the Baryon Oscillation Spectroscopic Survey (BOSS)
"CMASS" sample at . We introduce a novel method which accounts for
the stellar mass incompleteness of CMASS as a function of redshift, and produce
CMASS mock catalogs which include selection effects, reproduce the overall SMF,
the projected two-point correlation function , the CMASS ,
and are made publicly available. We study the effects of assembly bias above
collapse mass in the context of "age matching" and show that these effects are
markedly different compared to the ones explored by Hearin et al. (2013) at
lower stellar masses. We construct two models, one in which galaxy color is
stochastic ("AbM" model) as well as a model which contains assembly bias
effects ("AgM" model). By confronting the redshift dependent clustering of
CMASS with the predictions from our model, we argue that that galaxy colors are
not a stochastic process in high-mass halos. Our results suggest that the
colors of galaxies in high-mass halos are determined by other halo properties
besides halo peak velocity and that assembly bias effects play an important
role in determining the clustering properties of this sample.Comment: 22 pages. Appendix. B added. Matches the version accepted by MNRAS.
Mock galaxy catalog and HOD table are available at
http://www.massivegalaxies.co
On the occupation of X-ray selected galaxy groups by radio AGN since z=1.3
Previous clustering analysis of low-power radio AGN has indicated that they
preferentially live in massive groups. The X-ray surveys of the COSMOS field
have achieved a sensitivity at which these groups are directly detected out to
z=1.3. Making use of Chandra-, XMM- and VLA-COSMOS surveys we identify radio
AGN members (10**23.6 < L_1.4GHz/(W/Hz) < 10**25) of galaxy groups (10**13.2 <
M_200/M_sun < 10**14.4; 0.1<z<1.3) and study i) the radio AGN -- X-ray group
occupation statistics as a function of group mass, and ii) the distribution of
radio AGN within the groups. We find that radio AGN are preferentially
associated with galaxies close to the center (< 0.2r_200). Compared to our
control sample of group members matched in stellar mass and color to the radio
AGN host galaxies, we find a significant enhancement of radio AGN activity
associated with 10**13.6 < M_200/M_sun < 10**14 halos. We present the first
direct measurement of the halo occupation distribution (HOD) for radio AGN,
based on the total mass function of galaxy groups hosting radio AGN. Our
results suggest a possible deviation from the usually assumed power law HOD
model. We also find an overall increase of the fraction of radio AGN in galaxy
groups (<1r_200), relative to that in all environments.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter
- …
