397 research outputs found

    pi N --> Multi-pi N Scattering in the 1/N_c Expansion

    Get PDF
    We extend the 1/N_c expansion meson-baryon scattering formalism to cases in which the final state contains more than two particles. We first show that the leading-order large N_c processes proceed through resonant intermediate states (e.g., rho N or pi Delta). We then tabulate linear amplitude expressions for relevant processes and find that the pole structure of baryon resonances can be uniquely identified by their (non)appearance in eta N or mixed partial-wave pi Delta final states. We also show that quantitative predictions of pi N to pi Delta branching ratios predicted at leading order alone do not agree with measurements, but the inclusion of 1/N_c corrections is ample to explain the discrepancies.Comment: 23 pages, 3 eps figures, ReVTeX4, added reference and discussion, identical to PRD versio

    Pion-Nucleon Scattering Relations at Next-to-Leading Order in 1/N_c

    Full text link
    We obtain relations between partial-wave amplitudes for pi-N-->pi-N and pi-N-->pi-Delta directly from large N_c QCD. While linear relations among certain amplitudes holding at leading order (LO) in 1/N_c were derived in the context of chiral soliton models two decades ago, the present work employs a fully model-independent framework based on consistency with the large N_c expansion. At LO we reproduce the soliton model results; however, this method allows for systematic corrections. At next-to-leading order (NLO), most relations require additional unknown functions beyond those appearing at leading order (LO) and thus have little additional predictive power. However, three NLO relations for the pi-N-->pi-Delta reaction are independent of unknown functions and make predictions accurate at this order. The amplitudes relevant to two of these relations were previously extracted from experiment. These relations describe experiment dramatically better than their LO counterparts.Comment: 8 pages, 2 figures; references adde

    Pion Photoproduction Amplitude Relations in the 1/N_c Expansion

    Full text link
    We derive expressions for pion photoproduction amplitudes in the 1/N_c expansion of QCD, and obtain linear relations directly from this expansion that relate electromagnetic multipole amplitudes at all energies. The leading-order relations in 1/N_c compare favorably with available data, while the next-to-leading order relations seem to provide only a small improvement. However, when resonance parameters are compared directly, the agreement at O(1/N_c) or O(1/N_c^2) is impressive.Comment: 19 pages, ReVTeX, 50 eps files combine into 5 compound figure

    SU(3) Clebsch-Gordan Coefficients for Baryon-Meson Coupling at Arbitrary N_c

    Full text link
    We present explicit formulae for the SU(3) Clebsch-Gordan coefficients that are relevant for the couplings of large N_c baryons to mesons. In particular, we compute the Clebsch-Gordan series for the coupling of the octet (associated with mesons, and remains the correct representation at large N_c) to the large N_c analogs of the baryon octet and decuplet representations.Comment: 8 pages, no figures, ReVTe

    Theory of Thermodynamic Magnetic Oscillations in Quasi-One-Dimensional Conductors

    Full text link
    The second order correction to free energy due to the interaction between electrons is calculated for a quasi-one-dimensional conductor exposed to a magnetic field perpendicular to the chains. It is found that specific heat, magnetization and torque oscillate when the magnetic field is rotated in the plane perpendicular to the chains or when the magnitude of magnetic filed is changed. This new mechanism of thermodynamic magnetic oscillations in metals, which is not related to the presence of any closed electron orbits, is applied to explain behavior of the organic conductor (TMTSF)2_2ClO4_4.Comment: 11 pages + 5 figures (included

    Magnetic Determination of Hc2H_{c2} under Accurate Alignment in (TMTSF)2_2ClO4_4

    Full text link
    Cantilever magnetometry has been used to measure the upper critical magnetic field Hc2H_{c2} of the quasi-one dimensional molecular organic superconductor (TMTSF)2_2ClO4_4. From simultaneous resistivity and torque magnetization experiments conducted under precise field alignment, Hc2H_{c2} at low temperature is shown to reach 5T, nearly twice the Pauli paramagnetic limit imposed on spin singlet superconductors. These results constitute the first thermodynamic evidence for a large Hc2H_{c2} in this system and provide support for spin triplet pairing in this unconventional superconductorComment: Submitted July 1, 2003, Accepted December 9, 2003, Physical Review Letter
    corecore