2,215 research outputs found

    Mode stability in delta Scuti stars: linear analysis versus observations in open clusters

    Full text link
    A comparison between linear stability analysis and observations of pulsation modes in five delta Scuti stars, belonging to the same cluster, is presented. The study is based on the work by Michel et al. (1999), in which such a comparison was performed for a representative set of model solutions obtained independently for each individual star considered. In this paper we revisit the work by Michel et al. (1999) following, however, a new approach which consists in the search for a single, complete, and coherent solution for all the selected stars, in order to constrain and test the assumed physics describing these objects. To do so, refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations are used. In addition, a crude attempt is made to study the role of rotation on the prediction of mode instabilities.The present results are found to be comparable with those reported by Michel et al. (1999). Within the temperature range log T_eff = 3.87-3.88 agreement between observations and model computations of unstable modes is restricted to values for the mixing-length parameter alpha_nl less or equal to 1.50. This indicates that for these stars a smaller value for alpha_nl is required than suggested from a calibrated solar model. We stress the point that the linear stability analysis used in this work still assumes stellar models without rotation and that further developments are required for a proper description of the interaction between rotation and pulsation dynamics.Comment: 8 pages, 4 figures, 3 tables. (MNRAS, in press

    Asteroseismology of delta Scuti stars in open clusters: Praesepe

    Full text link
    The present paper provides a general overview of the asteroseismic potential of delta Scuti stars in clusters, in particular focusing on convection diagnostics. We give a summarise of the last results obtained by the authors for the Praesepe cluster of which five delta Scuti stars are analysed. In that work, linear analysis is confronted with observations, using refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations. A single, complete, and coherent solution for all the selected stars is found, which lead the authors to find important restrictions to the convection description for a certain range of effective temperatures. Furthermore, the method used allowed to give an estimate of the global parameters of the selected stars and constrain the cluster.Comment: 6 pages, 1 figure. Accepted for publication in Communications in Asteroseismolog

    Bostonia. Volume 3

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    The TSS-1 mission: Results on satellite charging

    Get PDF
    In the present paper we first give a short account of the mission TSS-1 flown on the Shuttle sts-46 in August 1992 and its basic electrical configurations. We then show some results obtained from the experiment RETE on board the satellite which are relevant for the issue of satellite charging

    Disentangling discrepancies between stellar evolution theory and sub-solar mass stars. The influence of the mixing length parameter for the UV Psc binary

    Full text link
    Serious discrepancies have recently been observed between predictions of stellar evolution models in the 0.7-1.1 M_sun mass range and accurately measured properties of binary stars with components in this mass range. We study one of these objects, the eclipsing binary UV Piscium, which is particularly interesting because Popper (1997) derived age estimates for each component which differed by more than a factor of two. In an attempt to solve this significant discrepancy (a difference in age of 11 Gyr), we compute a large grid of stellar evolution models with the CESAM code for each component. By fixing the masses to their accurately determined values (relative error smaller than 1% for both stars), we consider a wide range of possible metallicities Z (0.01 to 0.05), and Helium content Y (0.25 to 0.34) uncorrelated to Z. In addition, the mixing length parameter alpha_MLT is left as another free parameter. We obtain a best fit in the T_eff-radius diagram for a common chemical composition (Z, Y)=(0.012, 0.31), but a different MLT parameter alpha_MLT_A = 0.95+-0.12(statistical)+0.30(systematic) and alpha_MLT_B = 0.65+-0.07(stat)+0.10(syst). The apparent age discrepancy found by Popper (1997) disappears with this solution, the components being coeval to within 1%. This suggests that fixing alpha_MLT to its solar value (~1.6), a common hypothesis assumed in most stellar evolutionary models, may not be correct. Secondly, since alpha_MLT is smaller for the less massive component, this suggests that the MLT parameter may decrease with stellar mass, showing yet another shortcoming of the mixing length theory to explain stellar convection. This trend needs further confirmation with other binary stars with accurate data.Comment: 8 pages, accepted for publication in Astronomy & Astrophysic

    Measuring the extent of convective cores in low-mass stars using Kepler data: towards a calibration of core overshooting

    Full text link
    Our poor understanding of the boundaries of convective cores generates large uncertainties on the extent of these cores and thus on stellar ages. Our aim is to use asteroseismology to consistently measure the extent of convective cores in a sample of main-sequence stars whose masses lie around the mass-limit for having a convective core. We first test and validate a seismic diagnostic that was proposed to probe in a model-dependent way the extent of convective cores using the so-called r010r_{010} ratios, which are built with l=0l=0 and l=1l=1 modes. We apply this procedure to 24 low-mass stars chosen among Kepler targets to optimize the efficiency of this diagnostic. For this purpose, we compute grids of stellar models with both the CESAM2k and MESA evolution codes, where the extensions of convective cores are modeled either by an instantaneous mixing or as a diffusion process. Among the selected targets, we are able to unambiguously detect convective cores in eight stars and we obtain seismic measurements of the extent of the mixed core in these targets with a good agreement between the CESAM2k and MESA codes. By performing optimizations using the Levenberg-Marquardt algorithm, we then obtain estimates of the amount of extra-mixing beyond the core that is required in CESAM2k to reproduce seismic observations for these eight stars and we show that this can be used to propose a calibration of this quantity. This calibration depends on the prescription chosen for the extra-mixing, but we find that it should be valid also for the code MESA, provided the same prescription is used. This study constitutes a first step towards the calibration of the extension of convective cores in low-mass stars, which will help reduce the uncertainties on the ages of these stars.Comment: 27 pages, 15 figures, accepted in A&

    Impact of the new solar abundances on the calibration of the PMS binary system RS Cha

    Full text link
    Context: In a recent work, we tried to obtain a calibration of the two components of the pre-main sequence binary system RS Cha by means of theoretical stellar models. We found that the only way to reproduce the observational parameters of RS Cha with standard stellar models is to decrease the initial abundances of carbon and nitrogen derived from the GN93 solar mixture of heavy elements by a few tenths of dex. Aims: In this work, we aim to reproduce the observational properties of the RS Cha stars with stellar evolution models based on the new AGS05 solar mixture recently derived from a three-dimensional solar model atmosphere. The AGS05 mixture is depleted in carbon, nitrogen and oxygen with respect to the GN93 mixture. Methods: We calculated new stellar models of the RS Cha components using the AGS05 mixture and appropriate opacity tables. We sought models that simultaneously satisfy the observations of the two components (masses, radii, luminosities, effective temperatures and metallicity). Results: We find that it is possible to reproduce the observational data of the RS Cha stars with AGS05 models based on standard input physics. From these models, the initial helium content of the system is Y~0.255 and its age is ~9.13 +- 0.12 Myr.Comment: Research note accepted in A&A, 5 pages, 2 figure

    The CoRoT Evolution and Seismic Tools Activity: Goals and Tasks

    Full text link
    The forthcoming data expected from space missions such as CoRoT require the capacity of the available tools to provide accurate models whose numerical precision is well above the expected observational errors. In order to secure that these tools meet the specifications, a team has been established to test and, when necessary, to improve the codes available in the community. The CoRoT evolution and seismic tool activity (ESTA) has been set up with this mission. Several groups have been involved. The present paper describes the motivation and the organisation of this activity, providing the context and the basis for the presentation of the results that have been achieved so far. This is not a finished task as future even better data will continue to demand more precise and complete tools for asteroseismology.Comment: 11 pages, 3 figures, accepted for publication in Astrophysics and Space Science, 'CoRoT ESTA' special volum

    MIMAC : A micro-tpc matrix for directional detection of dark matter

    Full text link
    Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC project has been developed. It is based on a gaseous micro-TPC matrix, filled with CF4 and CHF3. The first results on low energy nuclear recoils (H, F) obtained with a low mono-energetic neutron field are presented. The discovery potential of this search strategy is discussed and illustrated by a realistic case accessible to MIMAC.Comment: 6 pages, Proc. of the fifth international symposium on large TPCs for low energy rare event detection, Paris, France, Dec. 2010. To appear in Journal of Physic

    Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements

    Get PDF
    International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∼1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∼1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet
    corecore