2,215 research outputs found
Mode stability in delta Scuti stars: linear analysis versus observations in open clusters
A comparison between linear stability analysis and observations of pulsation
modes in five delta Scuti stars, belonging to the same cluster, is presented.
The study is based on the work by Michel et al. (1999), in which such a
comparison was performed for a representative set of model solutions obtained
independently for each individual star considered. In this paper we revisit the
work by Michel et al. (1999) following, however, a new approach which consists
in the search for a single, complete, and coherent solution for all the
selected stars, in order to constrain and test the assumed physics describing
these objects. To do so, refined descriptions for the effects of rotation on
the determination of the global stellar parameters and on the adiabatic
oscillation frequency computations are used. In addition, a crude attempt is
made to study the role of rotation on the prediction of mode instabilities.The
present results are found to be comparable with those reported by Michel et al.
(1999). Within the temperature range log T_eff = 3.87-3.88 agreement between
observations and model computations of unstable modes is restricted to values
for the mixing-length parameter alpha_nl less or equal to 1.50. This indicates
that for these stars a smaller value for alpha_nl is required than suggested
from a calibrated solar model. We stress the point that the linear stability
analysis used in this work still assumes stellar models without rotation and
that further developments are required for a proper description of the
interaction between rotation and pulsation dynamics.Comment: 8 pages, 4 figures, 3 tables. (MNRAS, in press
Asteroseismology of delta Scuti stars in open clusters: Praesepe
The present paper provides a general overview of the asteroseismic potential
of delta Scuti stars in clusters, in particular focusing on convection
diagnostics. We give a summarise of the last results obtained by the authors
for the Praesepe cluster of which five delta Scuti stars are analysed. In that
work, linear analysis is confronted with observations, using refined
descriptions for the effects of rotation on the determination of the global
stellar parameters and on the adiabatic oscillation frequency computations. A
single, complete, and coherent solution for all the selected stars is found,
which lead the authors to find important restrictions to the convection
description for a certain range of effective temperatures. Furthermore, the
method used allowed to give an estimate of the global parameters of the
selected stars and constrain the cluster.Comment: 6 pages, 1 figure. Accepted for publication in Communications in
Asteroseismolog
Bostonia. Volume 3
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
The TSS-1 mission: Results on satellite charging
In the present paper we first give a short account of the mission TSS-1 flown on the Shuttle sts-46 in August 1992 and its basic electrical configurations. We then show some results obtained from the experiment RETE on board the satellite which are relevant for the issue of satellite charging
Disentangling discrepancies between stellar evolution theory and sub-solar mass stars. The influence of the mixing length parameter for the UV Psc binary
Serious discrepancies have recently been observed between predictions of
stellar evolution models in the 0.7-1.1 M_sun mass range and accurately
measured properties of binary stars with components in this mass range. We
study one of these objects, the eclipsing binary UV Piscium, which is
particularly interesting because Popper (1997) derived age estimates for each
component which differed by more than a factor of two. In an attempt to solve
this significant discrepancy (a difference in age of 11 Gyr), we compute a
large grid of stellar evolution models with the CESAM code for each component.
By fixing the masses to their accurately determined values (relative error
smaller than 1% for both stars), we consider a wide range of possible
metallicities Z (0.01 to 0.05), and Helium content Y (0.25 to 0.34)
uncorrelated to Z. In addition, the mixing length parameter alpha_MLT is left
as another free parameter. We obtain a best fit in the T_eff-radius diagram for
a common chemical composition (Z, Y)=(0.012, 0.31), but a different MLT
parameter alpha_MLT_A = 0.95+-0.12(statistical)+0.30(systematic) and
alpha_MLT_B = 0.65+-0.07(stat)+0.10(syst). The apparent age discrepancy found
by Popper (1997) disappears with this solution, the components being coeval to
within 1%. This suggests that fixing alpha_MLT to its solar value (~1.6), a
common hypothesis assumed in most stellar evolutionary models, may not be
correct. Secondly, since alpha_MLT is smaller for the less massive component,
this suggests that the MLT parameter may decrease with stellar mass, showing
yet another shortcoming of the mixing length theory to explain stellar
convection. This trend needs further confirmation with other binary stars with
accurate data.Comment: 8 pages, accepted for publication in Astronomy & Astrophysic
Measuring the extent of convective cores in low-mass stars using Kepler data: towards a calibration of core overshooting
Our poor understanding of the boundaries of convective cores generates large
uncertainties on the extent of these cores and thus on stellar ages. Our aim is
to use asteroseismology to consistently measure the extent of convective cores
in a sample of main-sequence stars whose masses lie around the mass-limit for
having a convective core. We first test and validate a seismic diagnostic that
was proposed to probe in a model-dependent way the extent of convective cores
using the so-called ratios, which are built with and
modes. We apply this procedure to 24 low-mass stars chosen among Kepler targets
to optimize the efficiency of this diagnostic. For this purpose, we compute
grids of stellar models with both the CESAM2k and MESA evolution codes, where
the extensions of convective cores are modeled either by an instantaneous
mixing or as a diffusion process. Among the selected targets, we are able to
unambiguously detect convective cores in eight stars and we obtain seismic
measurements of the extent of the mixed core in these targets with a good
agreement between the CESAM2k and MESA codes. By performing optimizations using
the Levenberg-Marquardt algorithm, we then obtain estimates of the amount of
extra-mixing beyond the core that is required in CESAM2k to reproduce seismic
observations for these eight stars and we show that this can be used to propose
a calibration of this quantity. This calibration depends on the prescription
chosen for the extra-mixing, but we find that it should be valid also for the
code MESA, provided the same prescription is used. This study constitutes a
first step towards the calibration of the extension of convective cores in
low-mass stars, which will help reduce the uncertainties on the ages of these
stars.Comment: 27 pages, 15 figures, accepted in A&
Impact of the new solar abundances on the calibration of the PMS binary system RS Cha
Context: In a recent work, we tried to obtain a calibration of the two
components of the pre-main sequence binary system RS Cha by means of
theoretical stellar models. We found that the only way to reproduce the
observational parameters of RS Cha with standard stellar models is to decrease
the initial abundances of carbon and nitrogen derived from the GN93 solar
mixture of heavy elements by a few tenths of dex.
Aims: In this work, we aim to reproduce the observational properties of the
RS Cha stars with stellar evolution models based on the new AGS05 solar mixture
recently derived from a three-dimensional solar model atmosphere. The AGS05
mixture is depleted in carbon, nitrogen and oxygen with respect to the GN93
mixture.
Methods: We calculated new stellar models of the RS Cha components using the
AGS05 mixture and appropriate opacity tables. We sought models that
simultaneously satisfy the observations of the two components (masses, radii,
luminosities, effective temperatures and metallicity).
Results: We find that it is possible to reproduce the observational data of
the RS Cha stars with AGS05 models based on standard input physics. From these
models, the initial helium content of the system is Y~0.255 and its age is
~9.13 +- 0.12 Myr.Comment: Research note accepted in A&A, 5 pages, 2 figure
The CoRoT Evolution and Seismic Tools Activity: Goals and Tasks
The forthcoming data expected from space missions such as CoRoT require the
capacity of the available tools to provide accurate models whose numerical
precision is well above the expected observational errors. In order to secure
that these tools meet the specifications, a team has been established to test
and, when necessary, to improve the codes available in the community. The CoRoT
evolution and seismic tool activity (ESTA) has been set up with this mission.
Several groups have been involved. The present paper describes the motivation
and the organisation of this activity, providing the context and the basis for
the presentation of the results that have been achieved so far. This is not a
finished task as future even better data will continue to demand more precise
and complete tools for asteroseismology.Comment: 11 pages, 3 figures, accepted for publication in Astrophysics and
Space Science, 'CoRoT ESTA' special volum
MIMAC : A micro-tpc matrix for directional detection of dark matter
Directional detection of non-baryonic Dark Matter is a promising search
strategy for discriminating WIMP events from background. However, this strategy
requires both a precise measurement of the energy down to a few keV and 3D
reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC
project has been developed. It is based on a gaseous micro-TPC matrix, filled
with CF4 and CHF3. The first results on low energy nuclear recoils (H, F)
obtained with a low mono-energetic neutron field are presented. The discovery
potential of this search strategy is discussed and illustrated by a realistic
case accessible to MIMAC.Comment: 6 pages, Proc. of the fifth international symposium on large TPCs for
low energy rare event detection, Paris, France, Dec. 2010. To appear in
Journal of Physic
Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements
International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∼1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∼1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet
- …
