234 research outputs found
The role of microorganisms in the formation of a stalactite in Botovskaya Cave, Siberia – paleoenvironmental implications
Calcitic speleothems in caves can form through abiogenic or biogenic processes, or through a combination of both. Many issues conspire to make the assessment of biogenicity difficult, especially when focusing on old speleothem deposits. This study reports on a multiproxy analysis of a Siberian stalactite, combining high-resolution microscopy, isotope geochemistry and microbially enhanced mineral precipitation laboratory experiments. The contact between growth layers in a stalactite exhibits a biogenic isotopic signature; coupled with morphological evidence, this supports a microbial origin of calcite crystals. SIMS δ<sup>13</sup>C data suggest that microbially mediated speleothem formation occurred repeatedly at short intervals before abiotic precipitation took over. The studied stalactite also contains iron and manganese oxides that have been mediated by microbial activity through extracellular polymeric substance (EPS)-influenced organomineralization processes. The latter reflect paleoenvironmental changes that occurred more than 500 000 yr ago, possibly related to the presence of a peat bog above the cave at that time. Microbial activity can initiate calcite deposition in the aphotic zone of caves before inorganic precipitation of speleothem carbonates. This study highlights the importance of microbially induced fractionation that can result in large negative δ<sup>13</sup>C excursions. The microscale biogeochemical processes imply that microbial activity has only negligible effects on the bulk δ<sup>13</sup>C signature in speleothems, which is more strongly affected by CO<sub>2</sub> degassing and the host rock signature
Distinguishing the combined vegetation and soil component of δ13C variation in speleothem records from subsequent degassing and prior calcite precipitation effects
The carbon isotopic signature inherited from soil and epikarst processes may be modified by degassing and prior calcite precipitation (PCP) before its imprint on speleothem calcite. Despite laboratory demonstration of PCP effects on carbon isotopes and increasingly sophisticated models of the governing processes, to date, there has been limited effort to deconvolve the dual PCP and soil–epikarst components in measured speleothem isotopic time series. In this contribution, we explore the feasibility, advantages, and disadvantages of using trace element ratios and δ44Ca to remove the overprinting effect of PCP on measured δ13C to infer the temporal variations in the initial δ13C of drip water prior to degassing and PCP. In nine examined stalagmites, the most widely utilized PCP indicators Mg/Ca and δ44Ca covary as expected. However, Sr /Ca does not show consistent relationships with δ44Ca so PCP is not the dominant control on Sr /Ca. From δ44Ca and Mg/Ca, our calculation of PCP as fCa, the fraction of initial Ca remaining in solution at the time the stalagmite layer is deposited, yields multiple viable solutions depending on the assumed δ44Ca fractionation factor and inferred variation in DMg. Uncertainty in the effective fractionation of δ13C during degassing and precipitation contributes to uncertainty in the absolute value of estimated initial δ13C. Nonetheless, the trends in initial δ13C are less sensitive to these uncertainties. In coeval stalagmites from the same cave spanning the 94 to 82 ka interval, trends in calculated initial δ13C are more similar than those in measured δ13C and reveal a common positive-anomaly initial δ13C during a stadial cooling event. During deglaciations, calculated initial δ13C implies a trend of greater respiration rates and higher soil CO2, although the higher interglacial drip water saturation favors more extensive PCP. Initial δ13C can be estimated for active and fossil speleothems from a range of settings, wherever there is confidence that Mg/Ca and/or δ44Ca provides a quantitative indication of past changes in PCP. Further study of Mg partitioning in speleothems will improve the robustness of Mg/Ca as a PCP proxy
Проектирование электрических силовых установок при поддержке многоцелевыми стратегиями оптимизации
Electric drive systems consisting of battery, inverter, electric motor and gearbox are applied in hybridor purely electric vehicles. The layout process of such propulsion systems is performed on system level under consideration of various component properties and their interfering characteristics. In addition, different boundary conditions are taken under account, e. g. performance, efficiency, packaging, costs. In this way, the development process of the power train involves a broad range of influencing parameters and periphery conditions and thus represents a multi-dimensional optimization problem. Stateof-the-art development processes of mechatronic systems are usually executed according to the V-model, which represents a fundamental basis for handling the complex interactions of the different disciplines involved. In addition, stage-gate processes and spiral models are applied to deal with the high level of complexity during conception, design and testing. Involving a large number of technical and economic factors, these sequential, recursive processes may lead to suboptimal solutions since the system design processes do not sufficiently consider the complex relations between the different, partially conflicting domains. In this context, the present publication introduces an integrated multi-objective optimization strategy for the effective conception of electric propulsion systems, which involves a holistic consideration of all components and requirements in a multi-objective manner. The system design synthesis is based on component-specific Pareto-optimal designs to handle performance, efficiency, package and costs for given system requirements. The results are displayed as Pareto-fronts of electric power train system designs variants, from which decision makers are able to choose the best suitable solution. In this way, the presented system design approach for the development of electrically driven axles enables a multi-objective optimization considering efficiency, performance, costs and package. It is capable to reduce development time and to improve overall system quality at the same time.Системы электропривода, состоящие из аккумулятора, инвертора, электродвигателя и коробки передач, применяются в гибридных или чисто электрических транспортных средствах. Процесс компоновки таких движительных систем осуществляется на системном уровне с учетом различных свойств компонентов и их интерферирующих характеристик. Кроме того, учитываются разные граничные условия, например технические характеристики, эффективность, комплектование, стоимость. Таким образом, процесс разработки силовой передачи включает в себя широкий диапазон влияющих параметров и периферических условий и тем самым представляет собой проблему многомерной оптимизации. Современные процессы разработки мехатронных систем обычно выполняются в соответствии с V-моделью, которая представляет собой фундаментальную основу для управления сложными взаимодействиями различных дисциплин. Кроме того, применяются этапные процессы и спиральные модели, чтобы справиться с высоким уровнем сложности при разработке, проектировании и тестировании. Вовлекая большое количество технических и экономических факторов, эти последовательные рекурсивные процессы могут привести к неоптимальным решениям, поскольку процессы проектирования системы недостаточно учитывают сложные отношения между различными, частично конфликтующими областями. В этом контексте настоящая публикация представляет интегрированную многоцелевую стратегию оптимизации для эффективной концепции электрических силовых установок, включающую комплексное рассмотрение всех компонентов и требований на многоцелевой основе. Синтез системного дизайна основан на Парето-оптимальных конструкциях со специфическими компонентами с целью обеспечения работы, эффективности, комплектации и затрат, предусмотренных для данной системы. Результаты отображаются в виде Парето-фронтов вариантов систем электрических трансмиссий, из которых лица, принимающие решения, могут выбрать наиболее подходящее из них. Таким образом, представленный подход к проектированию системы для разработки осей с электрическим приводом обеспечивает многоцелевую оптимизацию с учетом эффективности, функционирования, стоимости и комплектации. Данный подход позволяет сократить время разработки и одновременно обеспечить улучшение качества системы
Distinguishing the vegetation and soil component of δ13C variation in speleothem records from degassing and prior calcite precipitation effects
The carbon isotopic signature inherited from soil/epikarst processes may be modified by degassing and prior calcite precipitation (PCP) before its imprint on speleothem calcite. Despite laboratory demonstration of PCP effects on carbon isotopes and increasingly sophisticated models of the governing processes, to date, there has been limited effort to deconvolve the dual PCP and soil/epikarst components in measured speleothem isotopic time series. In this contribution, we explore the feasibility, advantages, and disadvantages of using trace element ratios and δ44Ca to remove the overprinting effect of PCP on measured δ13C to infer the temporal variations in the initial δ13C of dripwater. In 8 examined stalagmites, the most widely utilized PCP indicators Mg/Ca and δ44Ca covary as expected. However, Sr/Ca does not show consistent relationships with δ44Ca so PCP is not universally the dominant control on Sr/Ca. From δ44Ca and Mg/Ca, our calculation of PCP as fCa, fraction of initial Ca remaining at the deposition of the stalagmite layer, yields multiple viable solutions depending on the assumed δ44Ca fractionation factor and inferred variation in DMg. Uncertainty in the effective fractionation of δ13C during degassing and precipitation contributes to uncertainty in the absolute value of estimated initial δ13C. Nonetheless, the trends in initial δ13C are less sensitive to these uncertainties. In coeval stalagmites from the same cave spanning 94 to 82 ka interval, trends in calculated initial δ13C are more similar than those in measured δ13C, and reveal a common positive anomaly initial δ13C during a stadial cooling event. During deglaciations, the trend of greater respiration rates and higher soil CO2 is captured in the calculated initial δ13C, despite the tendency of higher interglacial dripwater situation to favor more extensive PCP.</p
Local and Regional Indian Summer Monsoon Precipitation Dynamics During Termination II and the Last Interglacial
To date Indian summer monsoon (ISM) dynamics have been assessed by changes in stalagmite δ18O. However, stalagmite δ18O is influenced by multiple environmental factors (e.g., atmospheric moisture transport, rainfall amount at the study site, and ISM seasonality), precluding simple and clear reconstructions of rainfall amount or variability. This study aims to disentangle these environmental factors by combining δ18O, δ44Ca, and elemental data from a stalagmite covering Termination II and the last interglacial from Mawmluh Cave, NE India, to produce a semiquantitative reconstruction of past ISM rainfall. We interpret δ18O as a mixed signal of rainfall source dynamics and rainfall amount and coupled δ44Ca and X/Ca ratios as indicators of local infiltration rate and prior calcite precipitation in the karst zone. The wettest conditions in our studied interval (135 and 100 kyrs BP; BP = before present, with the present being 1950 CE) occurred during Marine Isotope Stage 5e. Our multiproxy data set suggests a likely change in seasonal distribution of Marine Isotope Stage 5e rainfall compared to the Holocene; the wet season was longer with higher‐than‐modern dry season rainfall. Using the last interglacial as an analogue for future anthropogenic warming, our data suggest a more erratic ISM behavior in a warmer world
Arctic speleothems reveal nearly permafrost-free Northern Hemisphere in the late Miocene
Arctic warming is happening at nearly four times the global average rate. Long-term trends of permafrost dynamics cannot be estimated directly from monitoring of present-day thaw processes, requiring paleoclimate-proxy information. Here we use cave carbonates (speleothems) from a northern Siberian cave to determine when the Northern Hemisphere was mostly permafrost-free. At present, thick continuous permafrost in this region prevents speleothem growth. In a series of partially eroded caves, speleothems grew during the late Tortonian stage (8.68 ± 0.09 Ma), a time when the geographic position of this site was already similar to today. Paleotemperatures reconstructed from speleothems show that mean annual air temperatures (MAAT) in the region were + 6.6°C to + 11.1°C, when contemporary global MAAT were ~ 4.5 °C higher than modern. Our findings provide direct evidence that warming to Tortonian-like temperatures would leave most of the Northern Hemisphere permafrost-free. This may release up to ~ 130 petagrams of carbon, enhancing further warming
Permafrost-related hiatuses in stalagmites: Evaluating the potential for reconstruction of carbon cycle dynamics
Permafrost is widely present throughout the Northern Hemisphere high latitudes, and stores large amounts of carbon in the form of frozen soil organic matter. The response of permafrost regions to anthropogenic climate change remains uncertain, in part because of a lack of information on their response to past changes in global climate. Here we test the use of stalagmites from two caves in Siberia as a novel, precisely dated, and highly localised archive of past permafrost carbon cycle dynamics. Stalagmite growth at these sites is controlled by the presence/absence of permafrost above the cave over glacial-interglacial time scales. We target the transition layer between two subsequent growth phases (interglacials) and the interval directly following growth resumption after the last glacial in three stalagmites, as this is where a geochemical imprint of thaw-related processes in the frozen zone between surface and cave would be recorded. We apply a multi-proxy approach including carbon isotopes (δ13C and 14C) and trace element concentrations, combined with petrographic analyses and high-resolution U-Th chronology. Our dataset indicates complex growth patterns and possible intervals of microbial colonisation of the stalagmite surface in the transition layers. High-resolution U-Th ages confirm that the transition layer is not a single, long growth hiatus, but rather a period of extremely slow or episodic growth phases, possibly during “skipped” interglacials. However, we find no conclusive evidence for a geochemical signature related to permafrost degradation and related local carbon cycle dynamics, which might be related to insufficient sensitivity of the archive for high-frequency processes and/or insufficient measurement resolution
Reconstruction of Holocene and Last Interglacial vegetation dynamics and wildfire activity in southern Siberia
Abstract. Wildfires are a rapidly increasing threat to boreal forests. While our understanding of the drivers behind wildfires and their environmental impact is growing, it is mostly limited to the observational period. Here we focus on the boreal forests of southern Siberia and exploit a U–Th-dated stalagmite from Botovskaya Cave, located in the upper Lena region of southern Siberia, to document wildfire activity and vegetation dynamics during parts of two warm periods: the Last Interglacial (LIG; specifically part of the Last Interglacial maximum between 124.1 and 118.8 ka) and the Holocene (10–0 ka). Our record is based on levoglucosan (Lev), a biomarker sensitive to biomass burning, and on lignin oxidation products (LOPs) that discriminate between open and closed forest and hard- or softwood vegetation. In addition, we used carbonate carbon stable isotope ratios (δ13C), which reflect a dominant control of the host rock, to evaluate soil respiration and local infiltration changes. Our LOP data suggest that, during the Last Interglacial, the region around Botovskaya Cave was characterised by open forest, which by ca. 121.5 ka underwent a transition from fire-resistant hardwood to fire-prone softwood. The Lev record indicates that fire activity was high and increased towards the end of Last Interglacial just before 119 ka. In contrast, the Holocene was characterised by a closed-forest environment with mixed hard- and softwood vegetation. Holocene fire activity varied but at a much lower level than during the Last Interglacial. We attribute the changes in wildfire activity during the intervals of interest to the interplay between vegetation and climate. The open forests of the Last Interglacial were more likely to ignite than their closed Holocene equivalents, and their flammability was aided by warmer and drier summers and a stronger seasonal temperature contrast due to the increase in seasonal insolation difference compared to the Holocene. Our comparison of the last two interglacial intervals suggests that, with increasing global temperatures, the boreal forest of southern Siberia may become progressively more vulnerable to higher wildfire activity.
</jats:p
Aerosol forcing of the position of the intertropical convergence zone since AD1550
The position of the intertropical convergence zone is an important control on the distribution of low-latitude precipitation. Its position is largely controlled by hemisphere temperature contrasts1, 2. The release of aerosols by human activities may have resulted in a southward shift of the intertropical convergence zone since the early 1900s (refs 1, 3, 4, 5, 6) by muting the warming of the Northern Hemisphere relative to the Southern Hemisphere over this interval1, 7, 8, but this proposed shift remains equivocal. Here we reconstruct monthly rainfall over Belize for the past 456 years from variations in the carbon isotope composition of a well-dated, monthly resolved speleothem. We identify an unprecedented drying trend since ad 1850 that indicates a southward displacement of the intertropical convergence zone. This drying coincides with increasing aerosol emissions in the Northern Hemisphere and also marks a breakdown in the relationship between Northern Hemisphere temperatures and the position of the intertropical convergence zone observed earlier in the record. We also identify nine short-lived drying events since ad 1550 each following a large volcanic eruption in the Northern Hemisphere. We conclude that anthropogenic aerosol emissions have led to a reduction of rainfall in the northern tropics during the twentieth century, and suggest that geographic changes in aerosol emissions should be considered when assessing potential future rainfall shifts in the tropics
- …
