4,338 research outputs found

    Teaching "Symmetry" in the Introductory Physics Curriculum

    Get PDF
    Modern physics is largely defined by fundamental symmetry principles and Noether's Theorem. Yet these are not taught, or rarely mentioned, to beginning students, thus missing an opportunity to reveal that the subject of physics is as lively and contemporary as molecular biology, and as beautiful as the arts. We prescribe a symmetry module to insert into the curriculum, of a week's length.Comment: 15 pages, 4 figure

    Wireless Keypads - A New Classroom Technology Using Enhanced Multiple-Choice Questions

    Full text link
    This article discusses the advantages of using wireless keypads in the Lecture/classroom. This new technology requires multiple-choice (MC) questions to mate with the keypad entry features of these devices. The format of the traditional MC response is constrained to five choices and only one best response is allowed. For this reason, we propose enhancements to the traditional MC question. This enhanced MC question allows as many as ten answers. The answers can vary in their degree of correctness and can be assigned partial credit. By combining wireless keypads and multiple-choice questions, we can readily perform both formative and summative assessments of student learning. Examples and classroom applications are presented.Comment: pdf file, 8 pages,

    Magnetoelectric properties of 500 nm Cr2O3 films

    Get PDF
    The linear magnetoelectric effect was measured in 500 nm Cr2O3 films grown by rf sputtering on Al2O3 substrates between top and bottom thin film Pt electrodes. Magnetoelectric susceptibility was measured directly by applying an AC electric field and measuring the induced AC magnetic moment using superconducting quantum interference device magnetometry. A linear dependence of the induced AC magnetic moment on the AC electric field amplitude was found. The temperature dependence of the magnetoelectric susceptibility agreed qualitatively and quantitatively with prior measurements of bulk single crystals, but the characteristic temperatures of the film were lower than those of single crystals. It was also possible to reverse the sign of the magnetoelectric susceptibility by reversing the sign of the magnetic field applied during cooling through the N\'eel temperature. A competition between total magnetoelectric and Zeeman energies is proposed to explain the difference between film and bulk Cr2O3 regarding the cooling field dependence of the magnetoelectric effect.Comment: accepted at Physical Review

    Effects of hydrogen/deuterium absorption on the magnetic properties of Co/Pd multilayers

    Get PDF
    The effects of hydrogen (H2) and deuterium (D2) absorption were studied in two Co/Pd multilayers with perpendicular magnetic anisotropy (PMA) using polarized neutron reflectivity (PNR). PNR was measured in an external magnetic field H applied in the plane of the sample with the magnetization M confined in the plane for {\mu}_o H= 6.0 T and partially out of plane at 0.65 T. Nominal thicknesses of the Co and Pd layers were 2.5 {\AA} and 21 {\AA}, respectively. Because of these small values, the actual layer chemical composition, thickness, and interface roughness parameters were determined from the nuclear scattering length density profile ({\rho}_n) and its derivative obtained from both x-ray reflectivity and PNR, and uncertainties were determined using Monte Carlo analysis. The PNR {\rho}_n showed that although D2 absorption occurred throughout the samples, absorption in the multilayer stack was modest (0.02 D per Pd atom) and thus did not expand. Direct magnetometry showed that H2 absorption decreased the total M at saturation and increased the component of M in the plane of the sample when not at saturation. The PNR magnetic scattering length density ({\rho}_m) revealed that the Pd layers in the multilayer stack were magnetized and that their magnetization was preferentially modified upon D2 absorption. In one sample, a modulation of M with twice the multilayer period was observed at {\mu}_o H= 0.65 T, which increased upon D2 absorption. These results indicate that H2 or D2 absorption decreases both the PMA and total magnetization of the samples. The lack of measurable expansion during absorption indicates that these changes are primarily governed by modification of the electronic structure of the material.Comment: to appear in Physics review B, 201

    Antiferromagnetic spin Seebeck Effect

    Get PDF
    We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2_2. A device scale on-chip heater is deposited on a bilayer of Pt (4 nm)/MnF2_2 (110) (30 nm) grown by molecular beam epitaxy on a MgF2_2 (110) substrate. Using Pt as a spin detector layer it is possible to measure thermally generated spin current from MnF2_2 through the inverse spin Hall effect. The low temperature (2 - 80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T) are applied parallel the easy axis of the MnF2_2 thin film. When magnetic field is applied perpendicular to the easy axis, the spin flop transition is absent, as expected

    Magnetization Switching in Single-Domain Ferromagnets

    Full text link
    A model for single-domain uniaxial ferromagnetic particles with high anisotropy, the Ising model, is studied. Recent experimental observations have been made of the probability that the magnetization has not switched. Here an approach is described in which it is emphasized that a ferromagnetic particle in an unfavorable field is in fact a metastable system, and the switching is accomplished through the nucleation and subsequent growth of localized droplets. Nucleation theory is applied to finite systems to determine the coercivity as a function of particle size and to calculate the probability of not switching. Both of these quantities are modified by different boundary conditions, magnetostatic interactions, and quenched disorder.Comment: 4 pages, LaTeX, 2 figures, documentstyle{elsart} More fits and Mathematica notebook at http://www.scri.fsu.edu/~novotny/magnetism.html To appear in J.Mag.Mag.Mater. Conference Proceedings of 7th International Conference on Magnetism Cairns, Australia, August, 199

    An investigation into the feasibility of myoglobin-based single-electron transistors

    Full text link
    Myoglobin single-electron transistors were investigated using nanometer- gap platinum electrodes fabricated by electromigration at cryogenic temperatures. Apomyoglobin (myoglobin without heme group) was used as a reference. The results suggest single electron transport is mediated by resonant tunneling with the electronic and vibrational levels of the heme group in a single protein. They also represent a proof-of-principle that proteins with redox centers across nanometer-gap electrodes can be utilized to fabricate single-electron transistors. The protein orientation and conformation may significantly affect the conductance of these devices. Future improvements in device reproducibility and yield will require control of these factors

    Roughness and spatial density judgments on visual and haptic textures using virtual reality

    No full text
    The purpose of this study is to investigate multimodal visual-haptic texture perception for which we used virtual reality techniques. Participants judged a broad range of textures according to their roughness and their spatial density under visual, haptic and visual-haptic exploration conditions. Participants were well able to differentiate between the different textures both by using the roughness and the spatial density judgment. When provided with visualhaptic textures, subjects performance increased (for both judgments) indicating sensory combination of visual and haptic texture information. Most interestingly, performance for density and roughness judgments did not differ significantly, indicating that these estimates are highly correlated. This may be due to the fact that our textures were generated in virtual reality using a haptic pointforce display (PHANToM). In conclusion, it seems that the roughness and spatial density estimate were based on the same physical parameters given the display technology used
    corecore