11,642 research outputs found
Tuning Locality of Pair Coherence in Graphene-based Andreev Interferometers
We report on gate-tuned locality of superconductivity-induced phase-coherent magnetoconductance oscillations in a graphene-based Andreev interferometer, consisting of a T-shaped graphene bar in contact with a superconducting Al loop. The conductance oscillations arose from the flux change through the superconducting Al loop, with gate-dependent Fraunhofer-type modulation of the envelope. We confirm a transitional change in the character of the pair coherence, between local and nonlocal, in the same device as the effective length-to-width ratio of the device was modulated by tuning the pair-coherence length xi(T) in the graphene layer.open1133sciescopu
Current distribution of collective thermal depinning of Josephson vortices in naturally stacked Josephson junctions
We investigated the thermal-depinning current (I(c)) distribution of Josephson vortices (JVs) in naturally stacked Bi(2)Sr(2)CaCu(2)O(8+delta) intrinsic Jospehson junctions in tesla-range magnetic fields and at different field tilt angles from the in-plane position. The I(c) distribution in the thermal-activation regime contains accurate information on the bias and magnetic-field dependence of the Josephson-vortex pinning potential. In a few-tesla-range magnetic field, JVs in a row in a junction, strongly coupled with each other, are pinned or depinned like a single physical entity at a single pinning center. In the best-aligned in-plane magnetic field, the edge pinning is most relevant and is insensitive to the field strength. In the presence of pancake vortices (PVs) in a slightly tilted field, however, the PV pinning deepens the JV pinning potential linearly with the number of PVs.open1122sciescopu
Complete gate control of supercurrent in graphene p-n junctions
In a conventional Josephson junction of graphene, the supercurrent is not turned off even at the charge neutrality point, impeding further development of superconducting quantum information devices based on graphene. Here we fabricate bipolar Josephson junctions of graphene, in which a p-n potential barrier is formed in graphene with two closely spaced superconducting contacts, and realize supercurrent ON/OFF states using electrostatic gating only. The bipolar Josephson junctions of graphene also show fully gate-driven macroscopic quantum tunnelling behaviour of Josephson phase particles in a potential well, where the confinement energy is gate tuneable. We suggest that the supercurrent OFF state is mainly caused by a supercurrent dephasing mechanism due to a random pseudomagnetic field generated by ripples in graphene, in sharp contrast to other nanohybrid Josephson junctions. Our study may pave the way for the development of new gate-tuneable superconducting quantum information devices.open114344sciescopu
Ultimately short ballistic vertical graphene Josephson junctions
Much efforts have been made for the realization of hybrid Josephson junctions incorporating various materials for the fundamental studies of exotic physical phenomena as well as the applications to superconducting quantum devices. Nonetheless, the efforts have been hindered by the diffusive nature of the conducting channels and interfaces. To overcome the obstacles, we vertically sandwiched a cleaved graphene monoatomic layer as the normal-conducting spacer between superconducting electrodes. The atomically thin single-crystalline graphene layer serves as an ultimately short conducting channel, with highly transparent interfaces with superconductors. In particular, we show the strong Josephson coupling reaching the theoretical limit, the convex-shaped temperature dependence of the Josephson critical current and the exceptionally skewed phase dependence of the Josephson current; all demonstrate the bona fide short and ballistic Josephson nature. This vertical stacking scheme for extremely thin transparent spacers would open a new pathway for exploring the exotic coherence phenomena occurring on an atomic scale.open113435sciescopu
Continuous and reversible tuning of the disorder-driven superconductor-insulator transition in bilayer graphene
The influence of static disorder on a quantum phase transition (QPT) is a fundamental issue in condensed matter physics. As a prototypical example of a disorder-tuned QPT, the superconductor-insulator transition (SIT) has been investigated intensively over the past three decades, but as yet without a general consensus on its nature. A key element is good control of disorder. Here, we present an experimental study of the SIT based on precise in-situ tuning of disorder in dual-gated bilayer graphene proximity-coupled to two superconducting electrodes through electrical and reversible control of the band gap and the charge carrier density. In the presence of a static disorder potential, Andreev-paired carriers formed close to the Fermi level in bilayer graphene constitute a randomly distributed network of proximity-induced superconducting puddles. The landscape of the network was easily tuned by electrical gating to induce percolative clusters at the onset of superconductivity. This is evidenced by scaling behavior consistent with the classical percolation in transport measurements. At lower temperatures, the solely electrical tuning of the disorder-induced landscape enables us to observe, for the first time, a crossover from classical to quantum percolation in a single device, which elucidates how thermal dephasing engages in separating the two regimes.1132Ysciescopu
A multimodal network design problem for domestic container transportation with short sea shipping
With the growing importance of logistic in a green and environmental friendly way, it is widely accepted that short sea shipping (SSS) is a mean to divert the freight traffic from congested corridor in local communities as well as to reduce environmental costs. It can also relieve the problem of traffic congestion and investment on road construction and maintenance. This paper considers a multimodal transportation model for domestic container cargos, in which the flow of container cargos moving between foreign seaports and domestic cities can be transported via domestic seaports using SSS and inland by truck. We propose a two-level strategy in evaluating the various government policies to encourage or regulate the usage of SSS. While the objective of the freight carriers is to minimize its transportation cost, the government could internalize the external cost and invest on the transportation network with considering the cost to the society. A case study with the Taiwan network is performed to illustrate the benefit and performance of the model.postprintThe 12th World Conference on Transport Research (WCTR), Lisbon, Portugal, 11-15 July 2010
The directional hybrid measure of efficiency in data envelopment analysis
The efficiency measurement is a subject of great interest. The majority of studies on DEA models have been carried out using radial or non-radial approaches regarding the application of DEA for the efficiency measurement. This paper, based on the directional distance function, proposes a new generalized hybrid measure of efficiency under generalized returns to scale with the existence of both radial and non-radial inputs and outputs. It extends the hybrid measure of efficiency from Tone (2004) to a more general case. The proposed model is not only flexible enough for the decision-maker to adjust the radial and non-radial inputs and outputs to attain the efficiency score but also avoids the computational and interpretive difficulties, thereby giving rise to an important clarification and understanding of the generalized DEA model. Furthermore, several frequently-used DEA models (such as the CCR, BCC, ERM and SBM models) which depend on the radial or non-radial approaches are derived while their results were compared to the ones obtained from this hybrid model. The empirical examples emphasize the consequence of the proposed measure
Gas hydrate inhibition by perturbation of liquid water structure
Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.112716Ysciescopu
Interplay of Quantum Criticality and Geometric Frustration in Columbite
Motivated by CoNb2O6 (belonging to the columbite family of minerals), we
theoretically study the physics of quantum ferromagnetic Ising chains coupled
anti-ferromagnetically on a triangular lattice in the plane perpendicular to
the chain direction. We combine exact solutions of the chain physics with
perturbative approximations for the transverse couplings. When the triangular
lattice has an isosceles distortion (which occurs in the real material), the
T=0 phase diagram is rich with five different states of matter: ferrimagnetic,
N\'eel, anti-ferromagnetic, paramagnetic and incommensurate phases, separated
by quantum phase transitions. Implications of our results to experiments on
CoNb2O6 are discussed
Osteopontin as potential biomarker and therapeutic target in gastric and liver cancers
published_or_final_versio
- …
