4,283 research outputs found
Injection of hydrogen and vacancy-type defects during dissolution of aluminum
Formation of interfacial nanoscale voids in Al during room-temperature caustic corrosion was characterized by positron annihilation spectroscopy (PAS) and compared with measurements of deuterium absorption using secondary ion mass spectrometry (SIMS). The hypothesis was investigated that voids are created from vacancy-hydrogen (Vac-H) defects introduced during corrosion. Evidence for both mobile and immobile forms of absorbed hydrogen was obtained, the latter present within distances of 50 nm from the metal-oxide interface, where voids were also found. During corrosion, the immobile hydrogen was found only during discrete 1-2 min intervals of time separated by periods of 1-2 min when it was not present. Model calculations suggested that this transient behavior is consistent with repeated nucleation and dissolution of clusters of Vac-H defects. Only some aspects of the time-dependence of the void concentration from PAS corresponded with that of absorbed hydrogen; the former is believed to be influenced by metallic impurities
Formation of Aluminum Hydride during Alkaline Dissolution of Aluminum
The role of hydrogen-containing surface species in the alkaline dissolution of aluminum was studied by secondary ion mass spectrometry (SIMS) and atomic force microscopy (AFM). The measurements revealed quasi-periodic nucleation and dissolution of large number densities of size particles, during open-circuit dissolution in NaOH(D) at room temperature. SIMS results using deuterated solutions, and prior Auger microprobe measurements, indicated that the particles were composed of aluminum hydride (deuteride), with an aluminum hydroxide (deuteroxide) surface layer. The measured open-circuit potential during dissolution was close to the Nernst potential of hydride oxidation. It was concluded that forms continuously during dissolution by reaction of cathodically generated hydrogen with the Al metal and is oxidized to aluminate ions in the accompanying anodic process. The present results are a direct confirmation of hydride formation on Al accompanying corrosion
Identification of Birds through DNA Barcodes
Short DNA sequences from a standardized region of the genome provide a DNA barcode for identifying species. Compiling a public library of DNA barcodes linked to named specimens could provide a new master key for identifying species, one whose power will rise with increased taxon coverage and with faster, cheaper sequencing. Recent work suggests that sequence diversity in a 648-bp region of the mitochondrial gene, cytochrome c oxidase I (COI), might serve as a DNA barcode for the identification of animal species. This study tested the effectiveness of a COI barcode in discriminating bird species, one of the largest and best-studied vertebrate groups. We determined COI barcodes for 260 species of North American birds and found that distinguishing species was generally straightforward. All species had a different COI barcode(s), and the differences between closely related species were, on average, 18 times higher than the differences within species. Our results identified four probable new species of North American birds, suggesting that a global survey will lead to the recognition of many additional bird species. The finding of large COI sequence differences between, as compared to small differences within, species confirms the effectiveness of COI barcodes for the identification of bird species. This result plus those from other groups of animals imply that a standard screening threshold of sequence difference (10× average intraspecific difference) could speed the discovery of new animal species. The growing evidence for the effectiveness of DNA barcodes as a basis for species identification supports an international exercise that has recently begun to assemble a comprehensive library of COI sequences linked to named specimens
A study of 2 GHz electromagnetic wave propagation over optical paths in three geographical regions of the United States
Statistical correlation between optical microwave propagation reliability, fade margin, path length, and geographic locatio
Interpretation of quantitative crystallographic texture in copper electrodeposits on amorphous substrates
Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases
The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy number variation, and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low gene copy numbers of total C4, heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein alterations for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases
Disease Progression Mediated by Egr-1 Associated Signaling in Response to Oxidative Stress
When cellular reducing enzymes fail to shield the cell from increased amounts of reactive oxygen species (ROS), oxidative stress arises. The redox state is misbalanced, DNA and proteins are damaged and cellular transcription networks are activated. This condition can lead to the initiation and/or to the progression of atherosclerosis, tumors or pulmonary hypertension; diseases that are decisively furthered by the presence of oxidizing agents. Redox sensitive genes, like the zinc finger transcription factor early growth response 1 (Egr-1), play a pivotal role in the pathophysiology of these diseases. Apart from inducing apoptosis, signaling partners like the MEK/ERK pathway or the protein kinase C (PKC) can activate salvage programs such as cell proliferation that do not ameliorate, but rather worsen their outcome. Here, we review the currently available data on Egr-1 related signal transduction cascades in response to oxidative stress in the progression of epidemiologically significant diseases. Knowing the molecular pathways behind the pathology will greatly enhance our ability to identify possible targets for the development of new therapeutic strategies
- …
