27,051 research outputs found
Soft x-ray resonant magneto-optical Kerr effect as a depth-sensitive probe of magnetic heterogeneity: Its application to resolve helical spin structures using linear p polarization
We have calculated the soft x-ray resonant Kerr intensities as a function of the incident grazing angle of linearly p-polarized waves from the model spin structures, where the chirality (handedness) of the spin spirals (twist in depth) in a magnetic layer and the periodicity of a unit spiral are designed to vary. Variations in the chirality and the periodicity lead to noticeable changes in the Kerr intensity versus the grazing angle, which is due not only to a large sensitivity of the Kerr intensity of the linear p polarization to both the magnitude and direction of the transverse components of magnetizations, but also to a large dependence of the depth sensitivity on the grazing angle at the resonance regions. The measurement and analysis of the specular Kerr intensity are relatively straightforward in determining the inhomogeneous spin structures in depth, compared to those of the Kerr rotation and ellipticity. This is proven to be a convenient and useful probe to determine the handedness of spin spiral structures, as well as to resolve the detailed magnetic heterostructures in depth in ultrathin-layered films.open4
Magnetoresistive biosensors with on-chip pulsed excitation and magnetic correlated double sampling.
Giant magnetoresistive (GMR) sensors have been shown to be among the most sensitive biosensors reported. While high-density and scalable sensor arrays are desirable for achieving multiplex detection, scalability remains challenging because of long data acquisition time using conventional readout methods. In this paper, we present a scalable magnetoresistive biosensor array with an on-chip magnetic field generator and a high-speed data acquisition method. The on-chip field generators enable magnetic correlated double sampling (MCDS) and global chopper stabilization to suppress 1/f noise and offset. A measurement with the proposed system takes only 20 ms, approximately 50× faster than conventional frequency domain analysis. A corresponding time domain temperature correction technique is also presented and shown to be able to remove temperature dependence from the measured signal without extra measurements or reference sensors. Measurements demonstrate detection of magnetic nanoparticles (MNPs) at a signal level as low as 6.92 ppm. The small form factor enables the proposed platform to be portable as well as having high sensitivity and rapid readout, desirable features for next generation diagnostic systems, especially in point-of-care (POC) settings
Design of the freeform V-cut optics in the cell phone backlight system
2004-2005 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Schwartz Values Clusters and Tourists' Activities
Values have been related to tourist activities, producing contrasting results in different studies. This study helps to clarify the relationship between value patterns or segments and tourist activities using two different approaches to measuring Schwartz s (1992) values: the traditional rating scales and best-worst scaling approaches. The two measures suggested very similar four-cluster solutions that reflected Schwartz s higher order value dimensions. Further, the differences in the segments tourist related activities were sensible, suggesting people s holiday activities were influenced by their values and that tourism operators may benefit from taking values into account when considering target segments and appropriate marketing strategy and tactics
Obtaining strong ferromagnetism in diluted Gd-doped ZnO thin films through controlled Gd-defect complexes
We demonstrate the fabrication of reproducible long-range ferromagnetism (FM) in highly crystalline Gdx Zn 1−xO thin films by controlling the defects. Films are grown on lattice-matched substrates by pulsed laser deposition at low oxygen pressures (≤25 mTorr) and low Gd concentrations (x ≤ 0.009). These films feature strong FM (10 μB per Gd atom) at room temperature. While films deposited at higher oxygen pressure do not exhibit FM, FM is recovered by post-annealing these films under vacuum. These findings reveal the contribution of oxygen deficiency defects to the long-range FM. We demonstrate the possible FM mechanisms, which are confirmed by density functional theory study, and show that Gd dopants are essential for establishing FM that is induced by intrinsic defects in these films
Atomic-scale depth selectivity of soft x-ray resonant Kerr effect
A study was performed to demonstrate that soft x-ray Kerr rotation, ??K, versus incident grazing angle, ??, and energy, hv, measurements provide an extremely large depth selectivity on the atomic scales even in an ultrathin single layer, simply by choosing appropriate ?? and hv around the resonant regions. Both the experimental and simulation results of ?? vs ??K measurements were considered for depth-varying magnetization reversals in a 3.5-nm-thick Co layer of NiFe/FeMn/Co/Pd films.open161
The Dimensional Recurrence and Analyticity Method for Multicomponent Master Integrals: Using Unitarity Cuts to Construct Homogeneous Solutions
We consider the application of the DRA method to the case of several master
integrals in a given sector. We establish a connection between the homogeneous
part of dimensional recurrence and maximal unitarity cuts of the corresponding
integrals: a maximally cut master integral appears to be a solution of the
homogeneous part of the dimensional recurrence relation. This observation
allows us to make a necessary step of the DRA method, the construction of the
general solution of the homogeneous equation, which, in this case, is a coupled
system of difference equations.Comment: 17 pages, 2 figure
Loading Dynamics of a sliding DNA clamp
Sliding DNA clamps are loaded at a ss/dsDNA junction by a clamp loader that depends on ATP binding for clamp opening. Sequential ATP hydrolysis results in closure of the clamp so that it completely encircles and diffuses on dsDNA. We followed events during loading of an E. coli beta clamp in real time by using single-molecule FRET (smFRET). Three successive FRET states were retained for 0.3 s, 0.7 s, and 9 min: Hydrolysis of the first ATP molecule by the g clamp loader resulted in closure of the clamp in 0.3 s, and after 0.7 s in the closed conformation, the clamp was released to diffuse on the dsDNA for at least 9 min. An additional single-molecule polarization study revealed that the interfacial domain of the clamp rotated in plane by approximately 88 during clamp closure. The single-molecule polarization and FRET studies thus revealed the real-time dynamics of the ATP-hydrolysis-dependent 3D conformational change of the b clamp during loading at a ss/dsDNA junction.X1156Ysciescopu
HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes
HOXA10 is necessary for embryonic patterning of skeletal elements, but its function in bone formation beyond this early developmental stage is unknown. Here we show that HOXA10 contributes to osteogenic lineage determination through activation of Runx2 and directly regulates osteoblastic phenotypic genes. In response to bone morphogenic protein BMP2, Hoxa10 is rapidly induced and functions to activate the Runx2 transcription factor essential for bone formation. A functional element with the Hox core motif was characterized for the bone-related Runx2 P1 promoter. HOXA10 also activates other osteogenic genes, including the alkaline phosphatase, osteocalcin, and bone sialoprotein genes, and temporally associates with these target gene promoters during stages of osteoblast differentiation prior to the recruitment of RUNX2. Exogenous expression and small interfering RNA knockdown studies establish that HOXA10 mediates chromatin hyperacetylation and trimethyl histone K4 (H3K4) methylation of these genes, correlating to active transcription. HOXA10 therefore contributes to early expression of osteogenic genes through chromatin remodeling. Importantly, HOXA10 can induce osteoblast genes in Runx2 null cells, providing evidence for a direct role in mediating osteoblast differentiation independent of RUNX2. We propose that HOXA10 activates RUNX2 in mesenchymal cells, contributing to the onset of osteogenesis, and that HOXA10 subsequently supports bone formation by direct regulation of osteoblast phenotypic genes. <br/
Soft x-ray resonant magneto-optical Kerr effect as a depth-sensitive probe of magnetic heterogeneity: A simulation approach
We report a noticeable depth sensitivity of soft x-ray resonant magneto-optical Kerr effect able to resolve depth-varying magnetic heterostructures in ultrathin multilayer films. For various models of depth-varying magnetization orientations in an ultrathin Co layer of realistic complex layered structures, we have calculated the Kerr rotation, ellipticity, intensity spectra versus grazing incidence angle ??, and their hysteresis loops at different values of ?? for various photon energies ?? 's near the Co resonance regions. It is found from the simulation results that the Kerr effect has a much improved depth sensitivity and that its sensitivity varies remarkably with ?? and ?? in the vicinity of the resonance regions. These properties originate from a rich variety of wave interference effects superimposed with noticeable features of the refractive and absorptive optical effects near the resonance regions. Consequently, these allow us to resolve depth-varying magnetizations and their reversals varying with depth in a single magnetic layer and allow us to distinguish interface magnetism from the bulk properties in multilayer films. In this paper, the depth sensitivity of the Kerr effect with an atomic-scale resolution is demonstrated and discussed in details in several manners with the help of model simulations for various depth-varying spin configurations.open9
- …
