3,753 research outputs found
Nanoparticles to Nanoholes: Fabrication of Porous GaN with Precisely Controlled Dimension via the Enhanced GaN Decomposition by Au Nanoparticles
Porous GaN exhibits unique optoelectronic, chemical, and physical properties such as shift of band gap, increased surface area ratio, excellent chemical, mechanical, and thermal stability as well as efficient luminescence as compared to its bulk counterpart. Herein, we demonstrate a precise, efficient, and still cost-effective method of the fabrication of porous GaN through the enhanced GaN decomposition by using Au nanoparticles (NPs) as a catalyst, in which the size, density, and shape of the pores (nanoholes, NHs) can be precisely controlled. By the thermal annealing assisted with the Au NPs, the NHs are successfully fabricated, and the existence of Au NPs significantly accelerate the GaN decomposition at the interface between the NPs and GaN due to the Ga absorption by the Au NPs. We systematically study the formation mechanism of NHs assisted by the Au NPs by means of annealing temperature, duration, and Au deposition amount, and the results are systematically analyzed and discussed
Comparing computer-generated and pathologist-generated tumour segmentations for immunohistochemical scoring of breast tissue microarrays
BACKGROUND: Tissue microarrays (TMAs) have become a valuable resource for biomarker expression in translational research. Immunohistochemical (IHC) assessment of TMAs is the principal method for analysing large numbers of patient samples, but manual IHC assessment of TMAs remains a challenging and laborious task. With advances in image analysis, computer-generated analyses of TMAs have the potential to lessen the burden of expert pathologist review. METHODS: In current commercial software computerised oestrogen receptor (ER) scoring relies on tumour localisation in the form of hand-drawn annotations. In this study, tumour localisation for ER scoring was evaluated comparing computer-generated segmentation masks with those of two specialist breast pathologists. Automatically and manually obtained segmentation masks were used to obtain IHC scores for thirty-two ER-stained invasive breast cancer TMA samples using FDA-approved IHC scoring software. RESULTS: Although pixel-level comparisons showed lower agreement between automated and manual segmentation masks (κ=0.81) than between pathologists' masks (κ=0.91), this had little impact on computed IHC scores (Allred; [Image: see text]=0.91, Quickscore; [Image: see text]=0.92). CONCLUSIONS: The proposed automated system provides consistent measurements thus ensuring standardisation, and shows promise for increasing IHC analysis of nuclear staining in TMAs from large clinical trials
Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission
High- cuprate superconductors are characterized by a strong
momentum-dependent anisotropy between the low energy excitations along the
Brillouin zone diagonal (nodal direction) and those along the Brillouin zone
face (antinodal direction). Most obvious is the d-wave superconducting gap,
with the largest magnitude found in the antinodal direction and no gap in the
nodal direction. Additionally, while antinodal quasiparticle excitations appear
only below , superconductivity is thought to be indifferent to nodal
excitations as they are regarded robust and insensitive to . Here we
reveal an unexpected tie between nodal quasiparticles and superconductivity
using high resolution time- and angle-resolved photoemission on optimally doped
BiSrCaCuO. We observe a suppression of the nodal
quasiparticle spectral weight following pump laser excitation and measure its
recovery dynamics. This suppression is dramatically enhanced in the
superconducting state. These results reduce the nodal-antinodal dichotomy and
challenge the conventional view of nodal excitation neutrality in
superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic
Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.
The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation
Search for Charged Higgs Bosons in e+e- Collisions at \sqrt{s} = 189 GeV
A search for pair-produced charged Higgs bosons is performed with the L3
detector at LEP using data collected at a centre-of-mass energy of 188.6 GeV,
corresponding to an integrated luminosity of 176.4 pb^-1. Higgs decays into a
charm and a strange quark or into a tau lepton and its associated neutrino are
considered. The observed events are consistent with the expectations from
Standard Model background processes. A lower limit of 65.5 GeV on the charged
Higgs mass is derived at 95 % confidence level, independent of the decay
branching ratio Br(H^{+/-} -> tau nu)
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
N-type graphene induced by dissociative H-2 adsorption at room temperature
Studies of the interaction between hydrogen and graphene have been increasingly required due to the indispensable modulation of the electronic structure of graphene for device applications and the possibility of using graphene as a hydrogen storage material. Here, we report on the behaviour of molecular hydrogen on graphene using the gate voltage-dependent resistance of single-, bi-, and multi-layer graphene sheets as a function of H-2 gas pressure up to 24 bar from 300 K to 345 K. Upon H-2 exposure, the charge neutrality point shifts toward the negative gate voltage region, indicating n-type doping, and distinct Raman signature changes, increases in the interlayer distance of multi-layer graphene, and a decrease in the d-spacing occur, as determined by TEM. These results demonstrate the occurrence of dissociative H-2 adsorption due to the existence of vacancy defects on graphene.open12
- …
