1,766 research outputs found
Organic pig farmers and researchers working in eight European countries on animal Health, welfare and Nutrition to reduce environmental impact
The project “ProPIG” analyses the relationship between animal health, welfare and environmental impacts on 75 organic pig farms and the effect of farming systems on those. After development of on-farm assessment protocols a prospective cohort study is carried out across three housing system (outdoor, partly outdoor, indoor with concrete outside run) in eight European countries with the aim to improve the situation
An In Depth Study into Using EMI Signatures for Appliance Identification
Energy conservation is a key factor towards long term energy sustainability.
Real-time end user energy feedback, using disaggregated electric load
composition, can play a pivotal role in motivating consumers towards energy
conservation. Recent works have explored using high frequency conducted
electromagnetic interference (EMI) on power lines as a single point sensing
parameter for monitoring common home appliances. However, key questions
regarding the reliability and feasibility of using EMI signatures for
non-intrusive load monitoring over multiple appliances across different sensing
paradigms remain unanswered. This work presents some of the key challenges
towards using EMI as a unique and time invariant feature for load
disaggregation. In-depth empirical evaluations of a large number of appliances
in different sensing configurations are carried out, in both laboratory and
real world settings. Insights into the effects of external parameters such as
line impedance, background noise and appliance coupling on the EMI behavior of
an appliance are realized through simulations and measurements. A generic
approach for simulating the EMI behavior of an appliance that can then be used
to do a detailed analysis of real world phenomenology is presented. The
simulation approach is validated with EMI data from a router. Our EMI dataset -
High Frequency EMI Dataset (HFED) is also released
Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges
In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices
Probing Spin-Polarized Currents in the Quantum Hall Regime
An experiment to probe spin-polarized currents in the quantum Hall regime is
suggested that takes advantage of the large Zeeman-splitting in the
paramagnetic diluted magnetic semiconductor zinc manganese selenide
(ZnMnSe). In the proposed experiment spin-polarized electrons are
injected by ZnMnSe-contacts into a gallium arsenide (GaAs) two-dimensional
electron gas (2DEG) arranged in a Hall bar geometry. We calculated the
resulting Hall resistance for this experimental setup within the framework of
the Landauer-B\"uttiker formalism. These calculations predict for 100%
spininjection through the ZnMnSe-contacts a Hall resistance twice as high as in
the case of no spin-polarized injection of charge carriers into a 2DEG for
filling factor . We also investigated the influence of the equilibration
of the spin-polarized electrons within the 2DEG on the Hall resistance. In
addition, in our model we expect no coupling between the contact and the 2DEG
for odd filling factors of the 2DEG for 100% spininjection, because of the
opposite sign of the g-factors of ZnMnSe and GaAs.Comment: 7 pages, 5 figure
Effects of P300-based BCI use on reported presence in a virtual environment
Brain-computer interfaces (BCIs) are becoming more and more popular as an input device for virtual worlds and computer games. Depending on their function, a major drawback is the mental workload associated with their use and there is significant effort and training required to effectively control them. In this paper, we present two studies assessing how mental workload of a P300-based BCI affects participants" reported sense of presence in a virtual environment (VE). In the first study, we employ a BCI exploiting the P300 event-related potential (ERP) that allows control of over 200 items in a virtual apartment. In the second study, the BCI is replaced by a gaze-based selection method coupled with wand navigation. In both studies, overall performance is measured and individual presence scores are assessed by means of a short questionnaire. The results suggest that there is no immediate benefit for visualizing events in the VE triggered by the BCI and that no learning about the layout of the virtual space takes place. In order to alleviate this, we propose that future P300-based BCIs in VR are set up so as require users to make some inference about the virtual space so that they become aware of it,which is likely to lead to higher reported presence
Detecting unambiguously non-Abelian geometric phases with trapped ions
We propose for the first time an experimentally feasible scheme to disclose
the noncommutative effects induced by a light-induced non-Abelian gauge
structure with trapped ions. Under an appropriate configuration, a true
non-Abelian gauge potential naturally arises in connection with the geometric
phase associated with two degenerated dark states in a four-state atomic system
interacting with three pulsed laser fields. We show that the population in
atomic state at the end of a composed path formed by two closed loops and
in the parameter space can be significantly different from the composed
counter-ordered path. This population difference is directly induced by the
noncommutative feature of non-Abelian geometric phases and can be detected
unambiguously with current technology.Comment: 6 page
Farmer groups for animal health and welfare planning in European organic dairy hers
A set of common principles for active animal health and welfare planning in organic dairy farming has been developed in the ANIPLAN project group of seven European countries. Health and welfare planning is a farmer‐owned process of continuous development and improvement and may be practised in many different ways. It should incorporate health promotion and disease handling, based on a strategy where assessment of current status and risks forms the basis for evaluation, action and review. Besides this, it should be 1) farmspecific, 2) involve external person(s) and 3) external knowledge, 4) be based on organic principles, 5) be written, and 6) acknowledge good aspects in addition to targeting the problem areas in order to stimulate the learning process
Synthesizing efficacious genistein in conjugation with superparamagnetic Fe<sub>3</sub>O<sub>4</sub> decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma
Surgery groups of the fundamental groups of hyperplane arrangement complements
Using a recent result of Bartels and Lueck (arXiv:0901.0442) we deduce that
the Farrell-Jones Fibered Isomorphism conjecture in L-theory is true for any
group which contains a finite index strongly poly-free normal subgroup, in
particular, for the Artin full braid groups. As a consequence we explicitly
compute the surgery groups of the Artin pure braid groups. This is obtained as
a corollary to a computation of the surgery groups of a more general class of
groups, namely for the fundamental group of the complement of any fiber-type
hyperplane arrangement in the complex n-space.Comment: 11 pages, AMSLATEX file, revised following referee's comments and
suggestions, to appear in Archiv der Mathemati
- …
