4,103 research outputs found
Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics
Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach
Homology of Distributive Lattices
We outline the theory of sets with distributive operations: multishelves and
multispindles, with examples provided by semi-lattices, lattices and skew
lattices. For every such a structure we define multi-term distributive homology
and show some of its properties. The main result is a complete formula for the
homology of a finite distributive lattice. We also indicate the answer for
unital spindles and conjecture the general formula for semi-lattices and some
skew lattices. Then we propose a generalization of a lattice as a set with a
number of idempotent operations satisfying the absorption law.Comment: 30 pages, 3 tables, 3 figure
Cluster Populations in A115 and A2283
This paper presents four color narrow-band photometry of clusters A115
() and A2283 () in order to follow the star formation history
of various galaxy types. Although located at similar redshifts, the two
clusters display very different fractions of blue galaxies (i.e. the
Butcher-Oemler effect, for A115, for A2283). A system
of photometric classification is applied to the cluster members that divides
the cluster population into four classes based on their recent levels of star
formation. It is shown that the blue population of each cluster is primarily
composed of normal starforming (SFR < 1 M_{\sun} yrs) galaxies at the
high luminosity end, but with an increasing contribution from a dwarf starburst
population below . This dwarf starburst population appears to be
the same population of low mass galaxies identified in recent HST imaging (Koo
et al 1997), possible progenitors to present-day cluster dwarf ellipticals,
irregulars and BCD's. Deviations in the color-magnitude relationship for the
red galaxies in each cluster suggest that a population of blue S0's is evolving
into present-day S0 colors at this epoch. The radial distribution of the blue
population supports the prediction of galaxy harassment mechanisms for tidally
induced star formation operating on an infalling set of gas-rich galaxies.Comment: 28 pages including 2 tables and 9 figures, AASTeX v4.0. Accepted by
Ap.J. Data, referee report and response are avaliable from
http://zebu.uoregon.edu/~j
The clustering of diet, physical activity and sedentary behaviour in children and adolescents: a review
Diet, physical activity (PA) and sedentary behavior are important, yet modifiable, determinants of obesity. Recent research into the clustering of these behaviors suggests that children and adolescents have multiple obesogenic risk factors. This paper reviews studies using empirical, data-driven methodologies, such as cluster analysis (CA) and latent class analysis (LCA), to identify clustering patterns of diet, PA and sedentary behavior among children or adolescents and their associations with socio-demographic indicators, and overweight and obesity. A literature search of electronic databases was undertaken to identify studies which have used data-driven methodologies to investigate the clustering of diet, PA and sedentary behavior among children and adolescents aged 5–18 years old. Eighteen studies (62% of potential studies) were identified that met the inclusion criteria, of which eight examined the clustering of PA and sedentary behavior and eight examined diet, PA and sedentary behavior. Studies were mostly cross-sectional and conducted in older children and adolescents (≥9 years). Findings from the review suggest that obesogenic cluster patterns are complex with a mixed PA/sedentary behavior cluster observed most frequently, but healthy and unhealthy patterning of all three behaviors was also reported. Cluster membership was found to differ according to age, gender and socio-economic status (SES). The tendency for older children/adolescents, particularly females, to comprise clusters defined by low PA was the most robust finding. Findings to support an association between obesogenic cluster patterns and overweight and obesity were inconclusive, with longitudinal research in this area limited. Diet, PA and sedentary behavior cluster together in complex ways that are not well understood. Further research, particularly in younger children, is needed to understand how cluster membership differs according to socio-demographic profile. Longitudinal research is also essential to establish how different cluster patterns track over time and their influence on the development of overweight and obesity
An assessment of the strength of knots and splices used as eye terminations in a sailing environment
Research into knots, splices and other methods of forming an eye termination has been limited, despite the fact that they are essential and strongly affect the performance of a rope. The aim of this study was to carry out a comprehensive initial assessment of the breaking strength of eye terminations commonly used in a sailing environment, thereby providing direction for further work in the field. Supports for use in a regular tensile testing machine were specially developed to allow individual testing of each sample and a realistic spread of statistical data to be obtained. Over 180 break tests were carried out on four knots (the bowline, double bowline, figure-of-eight loop and perfection loop) and two splices (three-strand eye splice and braid-on-braid splice). The factors affecting their strength were investigated. A statistical approach to the analysis of the results was adopted. The type of knot was found to have a significant effect on the strength. This same effect was seen in both types of rope construction (three-strand and braid-on-braid). Conclusions were also drawn as to the effect of splice length, eye size, manufacturer and rope diameter on the breaking strength of splices. Areas of development and further investigation were identified
Arp 302: Non-starburst Luminous Infrared Galaxies
Arp 302, a luminous infrared source (L_{IR} = 4.2x10^{11} Lsun), consisting
of two spiral galaxies (VV340A and VV340B) with nuclear separation of 40'', has
the highest CO luminosity known. Observations with the BIMA array at 5'' X 7''
resolution reveal that the CO emission is extended over 23.0 kpc in the edge-on
spiral galaxy, VV340A, corresponding to 6.7x10^{10} Msun of H_2. In the
companion face-on galaxy, VV340B, the CO emission is extended over ~10.0 kpc,
with 1.1x10^{10} Msun of H_2. The large CO extent is in strong contrast to
starburst systems, such as Arp 220, in which the CO extent is typically 1
kpc. Furthermore, (H_2) is found to be 6.0 Lsun/Msun throughout
both galaxies. Thus the high IR luminosity of Arp 302 is apparently not due to
starbursts in the nuclear regions, but is due to its unusually large amount of
molecular gas forming stars at a rate similar to giant molecular clouds in the
Milky Way disk. Arp 302 consists of a pair of very gas-rich spiral galaxies
that may be interacting and in a phase before a likely onset of starbursts.Comment: AAS Latex plus two postscript figures. ApJ Letters (accepted
Design and performance of ropes for climbing and sailing
Ropes are an important part of the equipment used by climbers, mountaineers, and sailors. On first inspection, most modern polymer ropes appear similar, and it might be assumed that their designs, construction, and properties are governed by the same requirements. In reality, the properties required of climbing ropes are dominated by the requirement that they effectively absorb and dissipate the energy of the falling climber, in a manner that it does not transmit more than a critical amount of force to his body. This requirement is met by the use of ropes with relatively low longitudinal stiffness. In contrast, most sailing ropes require high stiffness values to maximize their effectiveness and enable sailors to control sails and equipment precisely. These conflicting requirements led to the use of different classes of materials and different construction methods for the two sports. This paper reviews in detail the use of ropes, the properties required, manufacturing techniques and materials utilized, and the effect of service conditions on the performance of ropes. A survey of research that has been carried out in the field reveals what progress has been made in the development of these essential components and identifies where further work may yield benefits in the future
Dust Temperatures in the Infrared Space Observatory Atlas of Bright Spiral Galaxies
We examine far-infrared and submillimeter spectral energy distributions for
galaxies in the Infrared Space Observatory Atlas of Bright Spiral Galaxies. For
the 71 galaxies where we had complete 60-180 micron data, we fit blackbodies
with lambda^-1 emissivities and average temperatures of 31 K or lambda^-2
emissivities and average temperatures of 22 K. Except for high temperatures
determined in some early-type galaxies, the temperatures show no dependence on
any galaxy characteristic. For the 60-850 micron range in eight galaxies, we
fit blackbodies with lambda^-1, lambda-2, and lambda^-beta (with beta variable)
emissivities to the data. The best results were with the lambda^-beta
emissivities, where the temperatures were ~30 K and the emissivity coefficient
beta ranged from 0.9 to 1.9. These results produced gas to dust ratios that
ranged from 150 to 580, which were consistent with the ratio for the Milky Way
and which exhibited relatively little dispersion compared to fits with fixed
emissivities.Comment: AJ, 2003, in pres
- …
