10,783 research outputs found
Invariance of the Kohn (sloshing) mode in a conserving theory
It is proven that the center of mass (COM or Kohn) oscillation of a many-body
system in a harmonic trap coincides with the motion of a single particle as
long as conserving approximations are applied to treat the interactions. The
two conditions formulated by Kadanoff and Baym \cite{kb-book} are shown to be
sufficient to preserve the COM mode. The result equally applies to zero and
finite temperature, as well as to nonequilibrium situations, and to the linear
and nonlinear response regimes
Reply to Farine and Aplin: Chimpanzees choose their association and interaction partners
Farine and Aplin (1) question the validity of our study reporting group-specific social dynamics in chimpanzees (2). As alternative to our approach, Farine and Aplin advance a “prenetwork permutation” methodology that tests against random assortment (3). We appreciate Farine and Aplin’s interest and applied their suggested approaches to our data. The new analyses revealed highly similar results to those of our initial approach. We further dispel Farine and Aplin’s critique by outlining its incompatibility to our study system, methodology, and analysis.First, when we apply the suggested prenetwork permutation to our proximity dataset, we again find significant population-level differences in association rates, while controlling for population size [as derived from Farine and Aplin’s script (4); original result, P < 0.0001; results including prenetwork permutation, P < 0.0001]. Furthermore, when we … ↵1To whom correspondence may be addressed. Email: ejcvanleeuwen{at}gmail.com
Compact two-electron wave function for bond dissociation and Van der Waals interactions: A natural amplitude assessment
Electron correlations in molecules can be divided in short range dynamical
correlations, long range Van der Waals type interactions and near degeneracy
static correlations. In this work we analyze for a one-dimensional model of a
two-electron system how these three types of correlations can be incorporated
in a simple wave function of restricted functional form consisting of an
orbital product multiplied by a single correlation function
depending on the interelectronic distance . Since the three types of
correlations mentioned lead to different signatures in terms of the natural
orbital (NO) amplitudes in two-electron systems we make an analysis of the wave
function in terms of the NO amplitudes for a model system of a diatomic
molecule. In our numerical implementation we fully optimize the orbitals and
the correlation function on a spatial grid without restrictions on their
functional form. Due to this particular form of the wave function, we can prove
that none of the amplitudes vanishes and moreover that it displays a distinct
sign pattern and a series of avoided crossings as a function of the bond
distance in agreement with the exact solution. This shows that the wave
function Ansatz correctly incorporates the long range Van der Waals
interactions. We further show that the approximate wave function gives an
excellent binding curve and is able to describe static correlations. We show
that in order to do this the correlation function needs to diverge
for large at large internuclear distances while for shorter bond
distances it increases as a function of to a maximum value after which
it decays exponentially. We further give a physical interpretation of this
behavior.Comment: 16 pages, 13 figure
Somatisation and functional impairment in adolescents: longitudinal link with mothers' reactions
Adolescents' somatisation (i.e., the psychological tendency to experience and report multiple physical complaints for which no definite medical cause can be found; SOM) and functional impairment (i.e., all bothersome aftermath of somatisation; FI) were studied in relation to mothers' protection, encouraging/monitoring, and minimisation of physical functional complaints. Besides main effects, interaction effects with other child and parenting characteristics were examined. A total of 990 adolescents and their mothers filled out questionnaires when the adolescents were respectively 12-13 (T1) and 13-14 (T2) years old. At T1, there was a significant relation between mothers' higher amounts of minimisation and adolescents' higher levels of SOM. Further, the link between mothers' higher levels of T1 minimisation and adolescents' higher amounts of T1 FI was significant, but not for adolescents with high levels of depressive mood. Longitudinal analyses revealed that mothers' reactions did not significantly predict adolescents' SOM/FI, nor did adolescents' SOM/FI significantly predict mothers' reactions. Practical implications are discussed
Automatic alignment for three-dimensional tomographic reconstruction
In tomographic reconstruction, the goal is to reconstruct an unknown object
from a collection of line integrals. Given a complete sampling of such line
integrals for various angles and directions, explicit inverse formulas exist to
reconstruct the object. Given noisy and incomplete measurements, the inverse
problem is typically solved through a regularized least-squares approach. A
challenge for both approaches is that in practice the exact directions and
offsets of the x-rays are only known approximately due to, e.g. calibration
errors. Such errors lead to artifacts in the reconstructed image. In the case
of sufficient sampling and geometrically simple misalignment, the measurements
can be corrected by exploiting so-called consistency conditions. In other
cases, such conditions may not apply and we have to solve an additional inverse
problem to retrieve the angles and shifts. In this paper we propose a general
algorithmic framework for retrieving these parameters in conjunction with an
algebraic reconstruction technique. The proposed approach is illustrated by
numerical examples for both simulated data and an electron tomography dataset
Atomic quasi-Bragg diffraction in a magnetic field
We report on a new technique to split an atomic beam coherently with an
easily adjustable splitting angle. In our experiment metastable helium atoms in
the |{1s2s}^3S_1 M=1> state diffract from a polarization gradient light field
formed by counterpropagating \sigma^+ and \sigma^- polarized laser beams in the
presence of a homogeneous magnetic field. In the near-adiabatic regime, energy
conservation allows the resonant exchange between magnetic energy and kinetic
energy. As a consequence, symmetric diffraction of |M=0> or |M=-1> atoms in a
single order is achieved, where the order can be chosen freely by tuning the
magnetic field. We present experimental results up to 6th order diffraction (24
\hbar k momentum splitting, i.e., 2.21 m/s in transverse velocity) and present
a simple theoretical model that stresses the similarity with conventional Bragg
scattering. The resulting device constitutes a flexible, adjustable,
large-angle, three-way coherent atomic beam splitter with many potential
applications in atom optics and atom interferometry.Comment: 4 pages, 5 figure
New Entrepreneurship in Urban Diasporas in our Modern World
ABSTRACT: Entrepreneurship among migrants – often called new, migrant or ethnic entrepreneurship – has over the past years become a significant component of the urban economy in many developed countries. Migrant entrepreneurship has a considerable welfare enhancing impact on the city, notably a contribution to innovation and growth, creation of new jobs for less favoured population groups, advancement of benefits from cultural diversity, and reinforcement of economic opportunities related to international connectivity. The present paper aims to investigate the backgrounds of migrant entrepreneurship in large Dutch cities, in particular, the critical success factors of business performance of these entrepreneurs in relation to their ethnic background, their levels of skill, and other specific and general contextual factors. To address the drivers of break-out strategies for new markets, a sample of second-generation Moroccan entrepreneurs is extensively interviewed to extract detailed information at a micro business level. The wealth of qualitative information on both input factors and output (performance) achievements is next systematically coded in a qualitative survey table which is converted into a format that is suitable for application of a rough set analysis. This is an artificial intelligence technique that is able to extract and identify the set of combinations of different drivers that altogether make up for a final outcome. The results show that longer stay in the host country, male gender, family network support and education of the entrepreneurs concerned are critical variables for the business performance of these urban diaspora entrepreneurs. KEYWORDS: Migrant entrepreneurship, break-out strategies, change agents, second-generation migrant entrepreneurs, urban economy, innovation, cultural diversity, international connectivity, business performance, rough set analysis, urban diaspora entreprene
Numerical simulations on the motion of atoms travelling through a standing-wave light field
The motion of metastable helium atoms travelling through a standing light
wave is investigated with a semi-classical numerical model. The results of a
calculation including the velocity dependence of the dipole force are compared
with those of the commonly used approach, which assumes a conservative dipole
force. The comparison is made for two atom guiding regimes that can be used for
the production of nanostructure arrays; a low power regime, where the atoms are
focused in a standing wave by the dipole force, and a higher power regime, in
which the atoms channel along the potential minima of the light field. In the
low power regime the differences between the two models are negligible and both
models show that, for lithography purposes, pattern widths of 150 nm can be
achieved. In the high power channelling regime the conservative force model,
predicting 100 nm features, is shown to break down. The model that incorporates
velocity dependence, resulting in a structure size of 40 nm, remains valid, as
demonstrated by a comparison with quantum Monte-Carlo wavefunction
calculations.Comment: 9 pages, 4 figure
Correlation effects in bistability at the nanoscale: steady state and beyond
The possibility of finding multistability in the density and current of an
interacting nanoscale junction coupled to semi-infinite leads is studied at
various levels of approximation. The system is driven out of equilibrium by an
external bias and the non-equilibrium properties are determined by real-time
propagation using both time-dependent density functional theory (TDDFT) and
many-body perturbation theory (MBPT). In TDDFT the exchange-correlation effects
are described within a recently proposed adiabatic local density approximation
(ALDA). In MBPT the electron-electron interaction is incorporated in a
many-body self-energy which is then approximated at the Hartree-Fock (HF),
second-Born (2B) and GW level. Assuming the existence of a steady-state and
solving directly the steady-state equations we find multiple solutions in the
HF approximation and within the ALDA. In these cases we investigate if and how
these solutions can be reached through time evolution and how to reversibly
switch between them. We further show that for the same cases the inclusion of
dynamical correlation effects suppresses bistability.Comment: 13 pages, 12 figure
- …
