28 research outputs found

    Molecular typing of Salmonella typhi strains from Dhaka (Bangladesh) and development of DNA probes identifying plasmid-encoded multidrug-resistant isolates

    Get PDF
    Seventy-eight Salmonella typhi strains isolated in 1994 and 1995 from patients living in Dhaka, Bangladesh, were subjected to phage typing, ribotyping, IS200 fingerprinting, and PCR fingerprinting. The collection displayed a high degree of genetic homogeneity, because restricted numbers of phage types and DNA fingerprints were observed. A significant number of the S. typhi strains (67%) were demonstrated to be multiple drug resistant (MDR). The vast majority of the MDR strains were resistant to chloramphenicol, ampicillin, trimethoprim, streptomycin, sulfamethoxazole, and tetracycline (R type CATmSSuT), a resistance phenotype that has also frequently been observed in India. Only two strains displayed a distinct MDR phenotype, R type AT-mSSuT. Pulsed-field gel electrophoresis demonstrated the presence of large plasmids exclusively in the MDR strains of both R types. The plasmids present in the S. typhi strains of R type CATmSSuT could be conjugated to Escherichia coli and resulted in the complete transfer of the MDR phenotype. PCR fingerprinting allowed discrimination of MDR and susceptible strains. The DNA fragments enabling discrimination of MDR and susceptible S. typhi strains by PCR were useful genetic markers for identifying MDR encoded by large plasmids of the H1 incompatibility group

    Bone mineral density assessed by phalangeal radiographic absorptiometry before and during long-term growth hormone treatment in girls with Turner's syndrome participating in a randomized dose-response study

    Get PDF
    To assess bone mineral density (BMD) in girls with Turner's syndrome before and during long-term treatment with GH, longitudinal measurements using phalangeal radiographic absorptiometry were performed in 68 girls with Turner's syndrome. These previously untreated girls, age 2-11 y, participating in a randomized, dose-response trial, were randomly assigned to one of three GH dosage groups: group A, 4 IU/m(2)/d ( approximately 0.045 mg/kg/d); group B, first year 4 IU/m(2)/d, thereafter 6 IU/m(2)/d ( approximately 0.0675 mg/kg/d); or group C, first year 4 IU/m(2)/d, second year 6 IU/m(2)/d, thereafter 8 IU/m(2)/d ( approximately 0.090 mg/kg/d). In the first 4 y of GH treatment, no estrogens for pubertal induction were prescribed to the girls. Thereafter, girls started with 17beta-estradiol (5 microg/kg body weight/d, orally) when they had reached the age of 12 y. BMD results were adjusted for bone age and sex, and expressed as SD scores using reference values of healthy Dutch girls. At baseline, almost every individual BMD value of bone consisting predominantly of cortical bone, as well as that of bone consisting predominantly of trabecular bone, was within the normal range of healthy girls and the SD scores were not significantly different from zero [mean (SE) 0.38 (0.22) and -0.04 (0.13)]. During 7 y of GH treatment, BMD SD scores showed a significant increase to values significantly higher than zero [mean (SE) 0.87 (0.15) and 0.95 (0.14)]. The increment in BMD SD score of bone consisting predominantly of cortical bone was significantly higher in group C compared with that of the other two GH dosage groups. The pretreatment bone age was significantly negatively related to the increment in BMD SD score. We found no significant influence of spontaneous puberty or the use of low-dose estrogens in the last 3 y of the study period on the increment in BMD SD score during 7 y of GH treatment. In conclusion, most untreated young girls with Turner's syndrome have a normal volumetric BMD. During 7 y of GH treatment with 4, 6, or 8 IU/m(2)/d, the BMD SD score increased significantly

    Rescue of Progeria in Trichothiodystrophy by Homozygous Lethal Xpd Alleles

    Get PDF
    Although compound heterozygosity, or the presence of two different mutant alleles of the same gene, is common in human recessive disease, its potential to impact disease outcome has not been well documented. This is most likely because of the inherent difficulty in distinguishing specific biallelic effects from differences in environment or genetic background. We addressed the potential of different recessive alleles to contribute to the enigmatic pleiotropy associated with XPD recessive disorders in compound heterozygous mouse models. Alterations in this essential helicase, with functions in both DNA repair and basal transcription, result in diverse pathologies ranging from elevated UV sensitivity and cancer predisposition to accelerated segmental progeria. We report a variety of biallelic effects on organismal phenotype attributable to combinations of recessive Xpd alleles, including the following: (i) the ability of homozygous lethal Xpd alleles to ameliorate a variety of disease symptoms when their essential basal transcription function is supplied by a different disease-causing allele, (ii) differential developmental and tissue-specific functions of distinct Xpd allele products, and (iii) interallelic complementation, a phenomenon rarely reported at clinically relevant loci in mammals. Our data suggest a re-evaluation of the contribution of “null” alleles to XPD disorders and highlight the potential of combinations of recessive alleles to affect both normal and pathological phenotypic plasticity in mammals
    corecore