407 research outputs found

    Nanofabricated tips for device-based scanning tunneling microscopy

    Full text link
    We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical circuits. We describe a new fabrication method to create a defined apex on a silicon chip and experimentally demonstrate the high performance of the smart tips, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. We further present an overview of possible applications

    Extensive collection of femtoliter pad secretion droplets in beetle Leptinotarsa decemlineata allows nanoliter microrheology

    Full text link
    Pads of beetles are covered with long, deformable setae, each ending in a micrometric terminal plate coated with secretory fluid. It was recently shown that the layer of the pad secretion covering the terminal plates is responsible for the generation of strong attractive forces. However, less is known about the fluid itself because it is produced in extremely small quantity. We here present a first experimental investigation of the rheological properties of the pad secretion in the Colorado potato beetle {\it Leptinotarsa decemlineata}. Because the secretion is produced in an extremely small amount at the level of the terminal plate, we first develop a procedure based on capillary effects to collect the secretion. We then manage to incorporate micrometric beads, initially in the form of a dry powder, and record their thermal motion to determine the mechanical properties of the surrounding medium. We achieve such a quantitative measurement within the collected volume, much smaller than the 1μ1 {\rm \mu}l sample volume usually required for this technique. Surprisingly, the beetle secretion was found to behave as a purely viscous liquid, of high viscosity. This suggests that no specific complex fluid behaviour is needed during beetle locomotion. We build a scenario for the contact formation between the spatula at the setal tip and a substrate, during the insect walk. We show that the attachment dynamics of the insect pad computed from the high measured viscosity is in good agreement with observed insect pace. We finally discuss the consequences of the secretion viscosity on the insect adhesion

    Eukaryotic Flagella: Variations in Form, Function, and Composition during Evolution

    Get PDF
    The microtubule axoneme is an iconic structure in eukaryotic cell biology and the defining structure in all eukaryotic flagella (or cilia). Flagella occur in taxa spanning the breadth of eukaryotic evolution, which indicates that the organelle's origin predates the radiation of extant eukaryotes from a last common ancestor. During evolution, the flagellar architecture has been subject to both elaboration and moderation. Even conservation of 9+2 architecture—the classic microtubule configuration seen in most axonemes—belies surprising variation in protein content. Classically considered as organelles of motility that support cell swimming or fast movement of material across a cell surface, it is now clear that the functions of flagella are also far broader; for instance, the involvement of flagella in sensory perception and protein secretion has recently been made evident in both protists and animals. Here, we review and discuss, in an evolutionary context, recent advances in our understanding of flagellum function and composition

    Lysosomal and vacuolar sorting: not so different after all!

    Get PDF
    Soluble hydrolases represent the main proteins of lysosomes and vacuoles and are essential to sustain the lytic properties of these organelles typical for the eukaryotic organisms. The sorting of these proteins from ER residents and secreted proteins is controlled by highly specific receptors to avoid mislocalization and subsequent cellular damage. After binding their soluble cargo in the early stage of the secretory pathway, receptors rely on their own sorting signals to reach their target organelles for ligand delivery, and to recycle back for a new round of cargo recognition. Although signals in cargo and receptor molecules have been studied in human, yeast and plant model systems, common denominators and specific examples of diversification have not been systematically explored. This review aims to fill this niche by comparing the structure and the function of lysosomal/vacuolar sorting receptors (VSRs) from these three organisms

    Modeling Green's function measurements with two-tip scanning tunneling microscopy

    Get PDF
    A double-tip scanning tunneling microscope with nanometer-scale tip separation has the ability to access the single-electron Green's function in real and momentum spaces based on second-order tunneling processes. Experimental realization of such measurements has been limited to quasi-one-dimensional systems due to the extremely small signal size. Here we propose an alternative approach to obtain such information by exploiting the current-current correlations from the individual tips and present a theoretical formalism to describe it. To assess the feasibility of our approach we make a numerical estimate for an ∼25-nm Pb nanoisland and show that the wave function in fact extends from tip to tip and the signal depends less strongly on increased tip separation in the diffusive regime than the one in alternative approaches relying on tip-to-tip conductance.Quantum Matter and Optic

    Direct evidence for flat bands in twisted bilayer graphene from nano-ARPES

    Get PDF
    Transport experiments in twisted bilayer graphene revealed multiple superconducting domes separated by correlated insulating states. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moir\'e superlattice as it was predicted by band structure calculations. Evidence for such a flat band comes from local tunneling spectroscopy and electronic compressibility measurements, reporting two or more sharp peaks in the density of states that may be associated with closely spaced van Hove singularities. Direct momentum resolved measurements proved difficult though. Here, we combine different imaging techniques and angle resolved photoemission with simultaneous real and momentum space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with homogeneous twist angle that support a flat band with spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands which show multiple moir\'e hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure.Comment: Submitted to Nature Materials. Nat. Phys. (2020

    The Canine Oral Microbiome

    Get PDF
    Determining the bacterial composition of the canine oral microbiome is of interest for two primary reasons. First, while the human oral microbiome has been well studied using molecular techniques, the oral microbiomes of other mammals have not been studied in equal depth using culture independent methods. This study allows a comparison of the number of bacterial taxa, based on 16S rRNA-gene sequence comparison, shared between humans and dogs, two divergent mammalian species. Second, canine oral bacteria are of interest to veterinary and human medical communities for understanding their roles in health and infectious diseases. The bacteria involved are mostly unnamed and not linked by 16S rRNA-gene sequence identity to a taxonomic scheme. This manuscript describes the analysis of 5,958 16S rRNA-gene sequences from 65 clone libraries. Full length 16S rRNA reference sequences have been obtained for 353 canine bacterial taxa, which were placed in 14 bacterial phyla, 23 classes, 37 orders, 66 families, and 148 genera. Eighty percent of the taxa are currently unnamed. The bacterial taxa identified in dogs are markedly different from those of humans with only 16.4% of oral taxa are shared between dogs and humans based on a 98.5% 16S rRNA sequence similarity cutoff. This indicates that there is a large divergence in the bacteria comprising the oral microbiomes of divergent mammalian species. The historic practice of identifying animal associated bacteria based on phenotypic similarities to human bacteria is generally invalid. This report describes the diversity of the canine oral microbiome and provides a provisional 16S rRNA based taxonomic scheme for naming and identifying unnamed canine bacterial taxa

    Microscopic anatomy of sensory receptors

    Get PDF
    Experiences following stimulation of the senses have been recorded for millennia, and they could be related to the gross anatomy of the sense organs. Examination of their microanatomy was to await the development of achromatic microscopes in the early nineteenth century. Among the microscopic structures that were isolated and described were specialized sensory cells, called receptors, and they could be related to the stimuli that excited them. Those located in well-defined sense organs (like the eyes, ears, nose, and tongue) were named on the basis of their morphology, whereas the receptors in or beneath the surface of the skin were generally named after those who first described them. Illustrations of early representations of sensory receptors are combined with "perceptual portraits" of the microanatomists who described them.</p
    corecore