7 research outputs found

    Analysis of De Novo HOXA 13 Polyalanine Expansions Supports Replication Slippage Without Repair in Their Generation

    Full text link
    Polyalanine repeat expansion diseases are hypothesized to result from unequal chromosomal recombination, yet mechanistic studies are lacking. We identified two de novo cases of hand‐foot‐genital syndrome (HFGS) associated with polyalanine expansions in HOXA13 that afforded rare opportunities to investigate the mechanism. The first patient with HFGS was heterozygous for a de novo nine codon polyalanine expansion. Haplotype investigation showed that the expansion arose on the maternally inherited chromosome but not through unequal crossing over between homologs, leaving unequal sister chromatid exchange during mitosis or meiosis or slipped mispairing as possible explanations. The asymptomatic father of the second patient with HFGS was mosaic for a six codon polyalanine expansion. Multiple tissue PCR and clonal analysis of paternal fibroblasts showed only expansion/WT and WT/WT clones, and haplotype data showed that two unaffected offspring inherited the same paternal allele without the expansion, supporting a postzygotic origin. Absence of the contracted allele in the mosaic father does not support sister chromatid exchange in the origin of the expansion. Mosaicism for HOXA13 polyalanine expansions may be associated with a normal phenotype, making examination of parental DNA essential in apparently de novo HFGS cases to predict accurate recurrence risks. We could not find an example in the literature where unequal sister chromatid exchange has been proven for any polyalanine expansion, suggesting that the principal mechanism for polyalanine expansions (and contractions) is slipped mispairing without repair or that the true frequency of unequal sister chromatid exchange involving these repeats is low. © 2013 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97454/1/ajmga35843.pd

    Initial Evaluation of Bone Ingrowth into a Novel Porous Titanium Coating

    No full text
    Porous metals (sintered beads and meshes) have been used for many years for different orthopedic applications. Metal foams have been recently developed. These foams have the advantage of being more porous than the traditional coatings. Their high porosity provides more space for bone ingrowth and mechanical interlocking and presents more surface for implant-bone contact. The objective of this study was to evaluate in vivo bone ingrowth into Ti implants covered with a novel Ti foam coating. This foam contains 50% in volume of interconnected pores and a higher surface area compared to dense Ti. Both coated implants and dense Ti controls were placed transcortically in the rat tibia. The animals were sacrificed at 2 weeks after implantation, and the amount of bone in the implants was determined using backscattered electron imaging and X-ray microtomography. Already at this time interval, the pores within the Ti foam showed 97.7% bone filling, and the bone-implant contact area was significantly increased compared to dense Ti controls. These initial results indicate that this novel Ti foam is biocompatible, has the capacity to sustain bone formation, and can potentially improve osseointegration.Peer reviewed: YesNRC publication: Ye

    Optimization of Tumor Dissection Procedures Leads to Measurable Improvement in the Quality of Molecular Testing

    No full text
    Molecular tests have an inherent limit of detection (LOD) and, therefore, require samples with sufficiently high percentages of neoplastic cells. Many laboratories use tissue dissection; however, optimal procedures for dissection and quality assurance measures have not been established. In this study, several modifications to tissue dissection procedures and workflow were introduced over 4 years. Each modification resulted in a significant improvement in one or more quality assurance measures. The review of materials following dissection resulted in a 90% reduction in KRAS mutations below the stated LOD (P = 0.004). Mutation allele frequencies correlated best with estimated tumor percentages for pathologists with more experience in this process. The direct marking of unstained slides, use of a stereomicroscope, validation of extraction from diagnostic slides, and use of a robust, targeted next-generation sequencing platform all resulted in reduction of quantity not sufficient specimens from 20% to 25% to nearly 0%, without a significant increase in test failures or mutations below the LOD. These data indicate that post-dissection review of unstained slides and monitoring quantity not sufficient rate, test failure rate, and mutation allele frequencies are important tumor dissection quality assurance measures that should be considered by laboratories performing tissue dissections. The amendments to tissue dissection procedures enacted during this study resulted in a measurable improvement in the quality and reliability of this process based on these metrics
    corecore