20 research outputs found

    Clinical and biological features of B‐cell neoplasms with CDK6 translocations: an association with a subgroup of splenic marginal zone lymphomas displaying frequent CD5 expression, prolymphocytic cells, and TP53 abnormalities

    No full text
    International audienceA translocation involving the cyclin‐dependent kinase 6 (CDK6) gene [t(CDK6)] is a rare but recurrent abnormality in B‐cell neoplasms. To further characterise this aberration, we studied 57 cases; the largest series reported to date. Fluorescence in situ hybridisation analysis confirmed the involvement of CDK6 in all cases, including t(2;7)(p11;q21) immunoglobulin kappa locus (IGK)/CDK6 (n = 51), t(7;14)(q21;q32) CDK6/immunoglobulin heavy locus (IGH) (n = 2) and the previously undescribed t(7;14)(q21;q11) CDK6/T‐cell receptor alpha locus (TRA)/T‐cell receptor delta locus (TRD) (n = 4). In total, 10 patients were diagnosed with chronic lymphocytic leukaemia, monoclonal B‐cell lymphocytosis or small lymphocytic lymphoma, and 47 had small B‐cell lymphoma (SmBL) including 36 cases of marginal zone lymphoma (MZL; 34 splenic MZLs, one nodal MZL and one bronchus‐associated lymphoid tissue lymphoma). In all, 18 of the 26 cytologically reviewed cases of MZL (69%) had an atypical aspect with prolymphocytic cells. Among the 47 patients with MZL/SmBL, CD5 expression was found in 26 (55%) and the tumour protein p53 (TP53) deletion in 22 (47%). The TP53 gene was mutated in 10/30 (33%); the 7q deletion was detected in only one case, and no Notch receptor 2 (NOTCH2) mutations were found. Immunoglobulin heavy‐chain variable‐region (IGHV) locus sequencing revealed that none harboured an IGHV1‐02*04 gene. Overall survival was 82% at 10 years and not influenced by TP53 aberration. Our present findings suggest that most t(CDK6)+ neoplasms correspond to a particular subgroup of indolent marginal zone B‐cell lymphomas with distinctive features

    "Double-hit" chronic lymphocytic leukemia: An aggressive subgroup with 17p deletion and 8q24 gain

    No full text
    Chronic lymphocytic leukemia (CLL) with 17p deletion (17p-) is associated with a lack of response to standard treatment and thus the worst possible clinical outcome. Various chromosomal abnormalities (including unbalanced translocations, deletions, ring chromosomes and isochromosomes) result in the loss of 17p and one copy of the TP53 gene. The objective of the present study was to determine whether the type of chromosomal abnormality leading to 17p- and the additional aberrations influenced the prognosis in a series of 195 patients with 17p-CLL. Loss of 17p resulted primarily from an unbalanced translocation (70%) with several chromosome partners (the most frequent being chromosome 18q), followed by deletion 17p (23%), monosomy 17 (8%), isochromosome 17q [i(17q)] (5%) and a ring chromosome 17 (2%). In a univariate analysis, monosomy 17, a highly complex karyotype (≥5 abnormalities), and 8q24 gain were associated with poor treatment-free survival, and i(17q) (p=0.04), unbalanced translocations (p=0.03) and 8q24 gain (p=0.001) were significantly associated with poor overall survival. In a multivariate analysis, 8q24 gain remained a significant predictor of poor overall survival. We conclude that 17p deletion and 8q24 gain have a synergistic impact on outcome, and so patients with this "double-hit" CLL have a particularly poor prognosis. Systematic, targeting screening for 8q24 gain should therefore be considered in cases of 17p- CLL. This article is protected by copyright. All rights reserved.status: publishe

    Genetic Characterization of B-Cell Prolymphocytic Leukemia (B-PLL): A Hierarchical Prognostic Model Involving MYC and TP53 Abnormalities. on Behalf of the Groupe Francophone De Cytogenetique Hematologique (GFCH) and the French Innovative Leukemia Organization (FILO) Group

    Full text link
    Abstract B-PLL is defined by the presence of prolymphocytes in peripheral blood exceeding 55% of lymphoid cells. The diagnosis, mainly based on clinical and morphological data, can be difficult because of overlap with other B-cell malignancies. Because of the rarity of the disease, only case reports and small series describe its cytogenetic features. Few prognostic markers have been identified in this aggressive leukemia usually resistant to standard chemo-immuno therapy. We report here the cytogenetic and molecular findings in a large series of B-PLL. We also studied the in vitro response to novel targeted drugs on primary B-PLL cells. The study included 34 cases with a diagnosis of B-PLL validated by morphological review performed by three independent expert cytologists. The diagnosis of mantle cell lymphoma was excluded by karyotype (K) and FISH using CCND1, CCND2 and CCND3 probes. Median age at diagnosis was 72 years [46-88]. K was complex (≥3 abnormalities) in 73%, and highly complex (HCK≥5) in 45%. Combining K and FISH data, the most frequent chromosomal aberrations were: translocation targeting the MYC gene [t(MYC)] (21/34, 62%), 17p deletion including TP53 gene (13/34, 38%), trisomy 18/18q (10/33, 30%), 13q14 deletion (10/34, 29%), trisomy 3 (8/33, 24%), trisomy 12 (8/34, 24%) and 8p deletion (7/31, 23%). Whole-Exome Sequencing analysis of paired tumor-control DNA was performed in 16 patients. The most frequently mutated genes were TP53(6/16, 38%), associated with del17p in all, MYD88 (n=4), BCOR (n=4), MYC (n=3), SF3B1 (n=3), FAT1 (n=3), SETD2 (n=2), CHD2 (n=2), CXCR4 (n=2), BCLAF1 (n=2) and NFASC (n=2). Distribution of the chromosomal aberrations is shown in Fig 1. The main group of patients (21/34, 62%) had a t(MYC) that was associated with a higher % of prolymphocytes (86 vs 76, p=0.03), CD38 expression (90% vs 15%,p&lt;0.001), and a lower K complexity (HCK≥5 : 20% vs 85%, p=0.0004). Mutations in MYC and in genes involved in RNA metabolism and chromatin remodeling were almost exclusively observed with t(MYC). Principal component analysis of gene expression data in 12 cases analyzed by RNA-Seq showed that the 7 patients with t(MYC) clustered together. These results suggest that t(MYC) form a homogeneous subgroup of B-PLL. A second group with MYC gain (5/34, 15%), was associated with HCK≥5 (100% vs 36%, p=0,01) and trisomy 3 (80% vs 14%, p=0,008). Altogether, 26/34 patients (76%) had a MYC activation, translocation or gain, that were mutually exclusive. The median overall survival (OS) for the entire cohort was 126 months with a median follow-up time of 47 months [ 0.2-141]. We found MYC activation (translocation or gain) to be associated with a shorter OS (p=0.03). Regarding MYC and del17p, we identified 3 distinct cytogenetic prognostic groups, with significant differences in OS (p=0.0006) (Fig 2). The patients without MYC activation had the lower risk (n=8, median not reached). Patients with a MYC activation without del17p had an intermediate risk (n=18, 125 months). The highest risk group corresponded to patients with both MYC and TP53 aberrations (n=7, 11 months). We performed drug response profiling on primary B-PLL cells using the ATP-based CellTiter Glo kit (Promega) (n=5). We observed that after 48h of exposure to increased doses, response was heterogeneous, with a majority of samples resistant to fludarabine (n=3), ibrutinib (n=3), idelalisib (n=4), venetoclax (n=3) and OTX015 (n=4). Annexin/PI assays using flow cytometry showed that the induced cell death could be increased by combination of ibrutinib or venetoclax with OTX015 or JQ1, two BET protein inhibitors that target MYC signaling (n=1/2). In summary, B-PLL have complex and highly complex K, a high frequency of MYC activation by translocation or gain, frequent 17p deletion, and frequent mutations in MYC, TP53, BCOR, and MYD88 genes. We identified 3 prognostic subgroups according to MYC and 17p status. Patients with MYC activation + 17p deletion have the shorter OS, and should be considered as a high-risk "double-hit" subgroup. Our results show that cytogenetic analysis is a useful diagnostic tool in B-PLL that improves prognostic stratification. We recommend to perform K and FISH (MYC and TP53) analyses systematically when a B-PLL is suspected. Our in vitro data suggest that drugs targeting the BCR and BCL2 in combination with MYC inhibition may be a therapeutic option in some patients. Disclosures Baseggio: Takeda Oncology: Honoraria. </jats:sec

    Viral proteins targeting mitochondria: controlling cell death

    Get PDF
    AbstractMitochondrial membrane permeabilization (MMP) is a critical step regulating apoptosis. Viruses have evolved multiple strategies to modulate apoptosis for their own benefit. Thus, many viruses code for proteins that act on mitochondria and control apoptosis of infected cells. Viral proapoptotic proteins translocate to mitochondrial membranes and induce MMP, which is often accompanied by mitochondrial swelling and fragmentation. From a structural point of view, all the viral proapoptotic proteins discovered so far contain amphipathic α-helices that are necessary for the proapoptotic effects and seem to have pore-forming properties, as it has been shown for Vpr from human immunodeficiency virus-1 (HIV-1) and HBx from hepatitis B virus (HBV). In contrast, antiapoptotic viral proteins (e.g., M11L from myxoma virus, F1L from vaccinia virus and BHRF1 from Epstein–Barr virus) contain mitochondrial targeting sequences (MTS) in their C-terminus that are homologous to tail-anchoring domains. These domains are similar to those present in many proteins of the Bcl-2 family and are responsible for inserting the protein in the outer mitochondrial membrane leaving the N-terminus of the protein facing the cytosol. The antiapoptotic proteins K7 and K15 from avian encephalomyelitis virus (AEV) and viral mitochondria inhibitor of apoptosis (vMIA) from cytomegalovirus are capable of binding host-specific apoptosis-modulatory proteins such as Bax, Bcl-2, activated caspase 3, CAML, CIDE-B and HAX. In conclusion, viruses modulate apoptosis at the mitochondrial level by multiple different strategies

    Genetic characterization of B-cell prolymphocytic leukemia: a prognostic model involving MYC and TP53

    No full text
    International audienceB-cell prolymphocytic leukemia (B-PLL) is a rare hematological disorder whose underlying oncogenic mechanisms are poorly understood. Our cytogenetic and molecular assessment of 34 patients with B-PLL revealed several disease-specific features and potential therapeutic targets. The karyotype was complex ({greater than or equal to}3 abnormalities) in 73% of the patients and highly complex (&gt;5 abnormalities) in 45%. The most frequent chromosomal aberrations were translocations involving MYC [t(MYC)] (62%), deletion (del)17p (38%), trisomy (tri)18 (30%), del13q (29%), tri3 (24%), tri12 (24%), and del8p (23%). Twenty-six of the 34 patients (76%) exhibit MYC aberration, resulting from mutually exclusive translocations or gains. Whole-exome sequencing revealed frequent mutations in TP53, MYD88, BCOR, MYC, SF3B1, SETD2, CHD2, CXCR4, and BCLAF1 The majority of B-PLL used the IGHV3 or IGHV4 subgroups (89%), and displayed significantly mutated IGHV genes (79%). We identified three distinct cytogenetic risk groups: low-risk (no MYC aberration), intermediate-risk (MYC aberration but no del17p), and high-risk (MYC aberration and del17p) (p=.0006). In vitro drug response profiling revealed that the combination of a B-cell receptor or BCL2 inhibitor with OTX015 (a bromodomain and extra-terminal motif (BET) inhibitor targeting MYC) was associated with significantly lower viability of B-PLL cells harboring a t(MYC). We conclude that cytogenetic analysis is a useful diagnostic and prognostic tool in B-PLL. Targeting MYC may be a useful treatment option in this disease
    corecore