7,704 research outputs found
Assessing statistical significance of periodogram peaks
The least-squares (or Lomb-Scargle) periodogram is a powerful tool which is
used routinely in many branches of astronomy to search for periodicities in
observational data. The problem of assessing statistical significance of
candidate periodicities for different periodograms is considered. Based on
results in extreme value theory, improved analytic estimations of false alarm
probabilities are given. They include an upper limit to the false alarm
probability (or a lower limit to the significance). These estimations are
tested numerically in order to establish regions of their practical
applicability.Comment: 7 pages, 6 figures, 1 table; To be published in MNRA
Abundances of Disk Planetary Nebulae in M31 and the Radial Oxygen Gradient
We have obtained spectra of 16 planetary nebulae in the disk of M31 and
determined the abundances of He, N, O, Ne, S and Ar. Here we present the median
abundances and compare them with previous M31 PN disk measurements and with PNe
in the Milky Way. We also derive the radial oxygen gradient in M31, which is
shallower than that in the Milky Way, even accounting for M31's larger disk
scale length.Comment: 2 pages, 1 figure, 1 table, to appear in the proceedings of IAU
Symposium No. 283, Planetary Nebulae: An Eye to the Futur
Separator development for a heat sterilizable battery Final summary progress report, 1 May 1966 - 15 Mar. 1967
Development and testing of vivyl polymer separator materials for sterilized silver-zinc secondary batter
Development of improved semi-organic structural adhesives for elevated temperature applications Technical summary report, 1 ~JUL. 1964 - 29 ~FEB. 1968
Titanium chelate polymer adhesive formulation for aluminum joint curing in high temperature application
Recommended from our members
FABRIC: A National-Scale Programmable Experimental Network Infrastructure
FABRIC is a unique national research infrastructure to enable cutting-edge and exploratory research at-scale in networking, cybersecurity, distributed computing and storage systems, machine learning, and science applications. It is an everywhere-programmable nationwide instrument comprised of novel extensible network elements equipped with large amounts of compute and storage, interconnected by high speed, dedicated optical links. It will connect a number of specialized testbeds for cloud research (NSF Cloud testbeds CloudLab and Chameleon), for research beyond 5G technologies (Platforms for Advanced Wireless Research or PAWR), as well as production high-performance computing facilities and science instruments to create a rich fabric for a wide variety of experimental activities
Autonomous Light Management in Flexible Photoelectrochromic Films Integrating High Performance Silicon Solar Microcells
Commercial smart window technologies for dynamic light and heat management in building and automotive environments traditionally rely on electrochromic (EC) materials powered by an external source. This design complicates building-scale installation requirements and substantially increases costs for applications in retrofit construction. Self-powered photoelectrochromic (PEC) windows are an intuitive alternative wherein a photovoltaic (PV) material is used to power the electrochromic device, which modulates the transmission of the incident solar flux. The PV component in this application must be sufficiently transparent and produce enough power to efficiently modulate the EC device transmission. Here, we propose Si solar microcells (μ-cells) that are i) small enough to be visually transparent to the eye, and ii) thin enough to enable flexible PEC devices. Visual transparency is achieved when Si μ-cells are arranged in high pitch (i.e. low-integration density) form factors while maintaining the advantages of a single-crystalline PV material (i.e., long lifetime and high performance). Additionally, the thin dimensions of these Si μ-cells enable fabrication on flexible substrates to realize these flexible PEC devices. The current work demonstrates this concept using WO₃ as the EC material and V₂O₅ as the ion storage layer, where each component is fabricated via sol-gel methods that afford improved prospects for scalability and tunability in comparison to thermal evaporation methods. The EC devices display fast switching times, as low as 8 seconds, with a modulation in transmission as high as 33%. Integration with two Si μ-cells in series (affording a 1.12 V output) demonstrates an integrated PEC module design with switching times of less than 3 minutes, and a modulation in transmission of 32% with an unprecedented EC:PV areal ratio
Empirical Studies of Evolving Systems
This paper describes the results of the working group investigating the issues of empirical studies for
evolving systems. The groups found that there were many issues that were central to successful evolution and this
concluded that this is a very important area within software engineering. Finally nine main areas were selected for consideration. For each of these areas the central issues were identified as well as success factors. In some cases success stories were also described and the critical factors accounting for the success analysed. In some cases it was later found that a number of areas were so tightly coupled that it was important to discuss them together
Open-Ended Evolutionary Robotics: an Information Theoretic Approach
This paper is concerned with designing self-driven fitness functions for
Embedded Evolutionary Robotics. The proposed approach considers the entropy of
the sensori-motor stream generated by the robot controller. This entropy is
computed using unsupervised learning; its maximization, achieved by an on-board
evolutionary algorithm, implements a "curiosity instinct", favouring
controllers visiting many diverse sensori-motor states (sms). Further, the set
of sms discovered by an individual can be transmitted to its offspring, making
a cultural evolution mode possible. Cumulative entropy (computed from ancestors
and current individual visits to the sms) defines another self-driven fitness;
its optimization implements a "discovery instinct", as it favours controllers
visiting new or rare sensori-motor states. Empirical results on the benchmark
problems proposed by Lehman and Stanley (2008) comparatively demonstrate the
merits of the approach
Mechanistic Studies on Selective Trimerization of Linear α-Olefins over a Supported Titanium Catalyst
The supported titanium catalyst s(FI)Ti, generated by adding (FI)TiCl3 to MAO-treated SiO2 (FI = (N-(5-methyl-3-(1-adamantyl)salicylidene)-2’-(2”-methoxyphenyl)anilinato)], effects the selective trimerization of the linear α-olefins (LAOs) propene, 1-pentene, 1-hexene, 1-decene, with >95% selectivity for trimers and ~85% selectivity to a single isomer thereof (2,3,5-trialkyl-1-hexene). Mechanistic interpretations are offered for the high regioselectivity as well as for some unusual kinetics behavior, including third-order dependence on LAO concentration and nearly identical initial rates at 0 and 25 °C
Materials Science Research Rack Onboard the International Space Station
The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved material
- …
