247 research outputs found
On the Core of Dynamic Cooperative Games
We consider dynamic cooperative games, where the worth of coalitions varies
over time according to the history of allocations. When defining the core of a
dynamic game, we allow the possibility for coalitions to deviate at any time
and thereby to give rise to a new environment. A coalition that considers a
deviation needs to take the consequences into account because from the
deviation point on, the game is no longer played with the original set of
players. The deviating coalition becomes the new grand coalition which, in
turn, induces a new dynamic game. The stage games of the new dynamical game
depend on all previous allocation including those that have materialized from
the deviating time on.
We define three types of core solutions: fair core, stable core and credible
core. We characterize the first two in case where the instantaneous game
depends on the last allocation (rather than on the whole history of
allocations) and the third in the general case. The analysis and the results
resembles to a great extent the theory of non-cooperative dynamic games.Comment: 25 page
Novel insights into host-fungal pathogen interactions derived from live-cell imaging
Acknowledgments The authors acknowledge funding from the Wellcome Trust (080088, 086827, 075470 and 099215) including a Wellcome Trust Strategic Award for Medical Mycology and Fungal Immunology 097377 and FP7-2007–2013 grant agreement HEALTH-F2-2010-260338–ALLFUN to NARG.Peer reviewedPublisher PD
Recommended from our members
Investigation of K14/K5 as a stem cell marker in the limbal region of the bovine cornea
Background: Identification of stem cells from a corneal epithelial cell population by specific molecular markers has been investigated previously. Expressions of P63, ABCG2 and K14/K5 have all been linked to mammalian corneal epithelial stem cells. Here we report on the limitations of K14/K5 as a limbal stem cell marker. Methodology/Principal Findings: K14/K5 expression was measured by immunohistochemistry, Western blotting and Real time PCR and compared between bovine epithelial cells in the limbus and central cornea. A functional study was also included to investigate changes in K5/14 expression within cultured limbal epithelial cells undergoing forced differentiation. K14 expression (or its partner K5) was detected in quiescent epithelial cells from both the limbal area and central cornea. K14 was localized predominantly to basal epithelial cells in the limbus and suprabasal epithelial cells in the central cornea. Western blotting revealed K14 expression in both limbus and central cornea (higher levels in the limbus). Similarly, quantitative real time PCR found K5, partner to K14, to be expressed in both the central cornea and limbus. Following forced differentiation in culture the limbal epithelial cells revealed an increase in K5/14 gene/protein expression levels in concert with a predictable rise in a known differentiation marker. Conclusions/Significance: K14 and its partner K5 are limited not only to the limbus but also to the central bovine cornea epithelial cells suggesting K14/K5 is not limbal specific in situ. Furthermore K14/K5 expression levels were not lowered (in fact they increased) within a limbal epithelial cell culture undergoing forced differentiation suggesting K14/K5 is an unreliable maker for undifferentiated cells ex vivo
AglH, a thermophilic UDP‑<i>N</i>‑acetylglucosamine‑1‑phosphate:dolichyl phosphate GlcNAc‑1‑phosphotransferase initiating protein<i> N</i>‑glycosylation pathway in <i>Sulfolobus acidocaldarius</i>, is capable of complementing the eukaryal Alg7
AglH, a predicted UDP-GlcNAc-1-phosphate:dolichyl phosphate GlcNAc-1-phosphotransferase, is initiating the protein N-glycosylation pathway in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. AglH successfully replaced the endogenous GlcNAc-1-phosphotransferase activity of Alg7 in a conditional lethal Saccharomyces cerevisiae strain, in which the first step of the eukaryal protein N-glycosylation process was repressed. This study is one of the few examples of cross-domain complementation demonstrating a conserved polyprenyl phosphate transferase reaction within the eukaryal and archaeal domain like it was demonstrated for Methanococcus voltae (Shams-Eldin et al. 2008). The topology prediction and the alignment of the AglH membrane protein with GlcNAc-1-phosphotransferases from the three domains of life show significant conservation of amino acids within the different proposed cytoplasmic loops. Alanine mutations of selected conserved amino acids in the putative cytoplasmic loops II (D(100)), IV (F(220)) and V (F(264)) demonstrated the importance of these amino acids for cross-domain AlgH activity in in vitro complementation assays in S. cerevisiae. Furthermore, antibiotic treatment interfering directly with the activity of dolichyl phosphate GlcNAc-1-phosphotransferases confirmed the essentiality of N-glycosylation for cell survival
The core Planar Cell Polarity gene, Vangl2, maintains apical-basal organisation of the corneal epithelium
This work was performed under Biotechnology and Biological Sciences Research Council (BBSRC) research grant BB/J015237/1 to JMC. DAP was funded by an Anatomical Society PhD Studentship whose support is gratefully acknowledged. ASF was funded by a BBSRC DTG PhD Studentship. We thank staff at the Medical Research Facility and Aberdeen Microscopy Services for technical assistance.Peer reviewedPostprin
Heavy and light roles: myosin in the morphogenesis of the heart
Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies
suggest that both myosin heavy-chain and myosin lightchain
proteins are required for a correctly formed heart.
Myosins are structural proteins that are not only expressed
from early stages of heart development, but when mutated
in humans they may give rise to congenital heart defects.
This review will discuss the roles of myosin, specifically
with regards to the developing heart. The expression of
each myosin protein will be described, and the effects that
altering expression has on the heart in embryogenesis in
different animal models will be discussed. The human
molecular genetics of the myosins will also be reviewed
Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks
Edge Detection in Landing Budgerigars (Melopsittacus undulatus)
Background: While considerable scientific effort has been devoted to studying how birds navigate over long distances, relatively little is known about how targets are detected, obstacles are avoided and smooth landings are orchestrated. Here we examine how visual features in the environment, such as contrasting edges, determine where a bird will land. Methodology/Principal Findings: Landing in budgerigars (Melopsittacus undulatus) was investigated by training them to fly from a perch to a feeder, and video-filming their landings. The feeder was placed on a grey disc that produced a contrasting edge against a uniformly blue background. We found that the birds tended to land primarily at the edge of the disc and walk to the feeder, even though the feeder was in the middle of the disc. This suggests that the birds were using the visual contrast at the boundary of the disc to target their landings. When the grey level of the disc was varied systematically, whilst keeping the blue background constant, there was one intermediate grey level at which the budgerigar's preference for the disc boundary disappeared. The budgerigars then landed randomly all over the test surface. Even though this disc is (for humans) clearly distinguishable from the blue background, it offers very little contrast against the background, in the red and green regions of the spectrum. Conclusions: We conclude that budgerigars use visual edges to target and guide landings. Calculations of photoreceptor excitation reveal that edge detection in landing budgerigars is performed by a color-blind luminance channel that sums the signals from the red and green photoreceptors, or, alternatively, receives input from the red double-cones. This finding has close parallels to vision in honeybees and primates, where edge detection and motion perception are also largely color-blind
Plant-Derived Polysaccharide Supplements Inhibit Dextran Sulfate Sodium-Induced Colitis in the Rat
Several plant-derived polysaccharides have been shown to have anti-inflammatory activity in animal models. Ambrotose complex and Advanced Ambrotose are dietary supplements that include aloe vera gel, arabinogalactan, fucoidan, and rice starch, all of which have shown such activity. This study was designed to evaluate these formulations against dextran sulfate sodium (DSS)-induced colitis in rats and to confirm their short-term safety after 14 days of daily dosing. Rats were dosed daily orally with vehicle, Ambrotose or Advanced Ambrotose. On day six groups of rats received tap water or 5% Dextran Sulfate sodium. Ambrotose and Advanced Ambrotose significantly lowered the disease scores and partially prevented the shortening of colon length. An increase in monocyte count was induced by dextran sulfate sodium and inhibited by Ambrotose and Advanced Ambrotose. There were no observable adverse effects after 14-day daily doses. The mechanism of action of the formulations against DSS-induced colitis may be related to its effect on monocyte count
Proteolysis of Human Thrombin Generates Novel Host Defense Peptides
The coagulation system is characterized by the sequential and highly localized activation of a series of serine proteases, culminating in the conversion of fibrinogen into fibrin, and formation of a fibrin clot. Here we show that C-terminal peptides of thrombin, a key enzyme in the coagulation cascade, constitute a novel class of host defense peptides, released upon proteolysis of thrombin in vitro, and detected in human wounds in vivo. Under physiological conditions, these peptides exert antimicrobial effects against Gram-positive and Gram-negative bacteria, mediated by membrane lysis, as well as immunomodulatory functions, by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, they are protective against P. aeruginosa sepsis, as well as lipopolysaccharide-induced shock. Moreover, the thrombin-derived peptides exhibit helical structures upon binding to lipopolysaccharide and can also permeabilize liposomes, features typical of “classical” helical antimicrobial peptides. These findings provide a novel link between the coagulation system and host-defense peptides, two fundamental biological systems activated in response to injury and microbial invasion
- …
