152 research outputs found

    Escherichia coli mastitis : Bacterial factors and host response

    Get PDF

    Myyntiluvallisten rokotteiden sisältämään alumiiniin ei liity turvallisuusriskiä

    Get PDF

    The BepiColombo Environment Radiation Monitor, BERM

    Get PDF
    The BepiColombo Environment Radiation Monitor (BERM) on board the European Space Agency's Mercury Planetary Orbiter (MPO), is designed to measure the radiation environment encountered by BepiColombo. The instrument measures electrons with energies from similar to 150 keV to similar to 10 MeV, protons with energies from similar to 1.5 MeV to similar to 100 MeV, and heavy ions with Linear Energy Transfer from 1 to 50 MeV.mg(-1).cm(2). BERM is operated continuously, being responsible for monitoring the radiation levels during all phases of the mission, including the cruise, the planetary flybys of Earth, Venus and Mercury, and the Hermean environment. In this paper, we describe the scientific objectives, instrument design and calibration, and the in-flight scientific performance of BERM. Moreover, we provide the first scientific results obtained by BERM during the BepiColombo flyby of Earth in April 2020, and after the impact of a solar energetic particle event during the cruise phase in May 2021. We also discuss the future plans of the instrument including synergies with other instruments on the BepiColombo and on other missions.Peer reviewe

    SUNSTORM 1/X-ray Flux Monitor for CubeSats (XFM-CS) : Instrument characterization and first results

    Get PDF
    SUNSTORM 1 CubeSat was launched to Sun-synchronous low Earth orbit on August 17 2021. The primary purpose of the mission is an in-orbit demonstration of X-ray Flux Monitor (XFM) instrument. XFM is an innovative solar X-ray spectrometer for measuring and characterizing solar flares, which are known to be linked to a variety of space weather phenomena. XFM represents a next generation of solar X-ray flux monitors. It is based on silicon drift detector technology, which provides several notable performance improvements over its predecessors, which are based on Si PIN detectors. Transversal electric field and lower output capacitance allow operation at much faster pulse processing shaping times, allowing the system to achieve about 10 times higher throughput without saturation while also making it less sensitive to the increase of leakage current due to high temperature and/or radiation damage. Thus, XFM instruments can cover a very wide dynamic range of solar X-ray emission from the most quiescent conditions to the strongest X-class solar flares, while maintaining good spectral resolution (Peer reviewe

    The BepiColombo Environment Radiation Monitor, BERM

    Get PDF
    The BepiColombo Environment Radiation Monitor (BERM) on board the European Space Agency's Mercury Planetary Orbiter (MPO), is designed to measure the radiation environment encountered by BepiColombo. The instrument measures electrons with energies from similar to 150 keV to similar to 10 MeV, protons with energies from similar to 1.5 MeV to similar to 100 MeV, and heavy ions with Linear Energy Transfer from 1 to 50 MeV.mg(-1).cm(2). BERM is operated continuously, being responsible for monitoring the radiation levels during all phases of the mission, including the cruise, the planetary flybys of Earth, Venus and Mercury, and the Hermean environment. In this paper, we describe the scientific objectives, instrument design and calibration, and the in-flight scientific performance of BERM. Moreover, we provide the first scientific results obtained by BERM during the BepiColombo flyby of Earth in April 2020, and after the impact of a solar energetic particle event during the cruise phase in May 2021. We also discuss the future plans of the instrument including synergies with other instruments on the BepiColombo and on other missions

    Solar Intensity X-Ray and Particle Spectrometer SIXS : Instrument Design and First Results

    Get PDF
    The Solar Intensity X-ray and particle Spectrometer (SIXS) on the BepiColombo Mercury Planetary Orbiter ("Bepi") measures the direct solar X-rays, energetic protons, and electrons that bombard, and interact with, the Hermean surface. The interactions result in X-ray fluorescence and scattering, and particle induced X-ray emission (PIXE), i.e. "glow" of the surface in X-rays. Simultaneous monitoring of the incident and emitted radiation enables derivation of the abundances of some chemical elements and scattering properties of the outermost surface layer of the planet, and it may reveal other sources of X-ray emission, due to, for example, weak aurora-like phenomena in Mercury's exosphere. Mapping of the Hermean X-ray emission is the main task of the MIXS instrument onboard BepiColombo. SIXS data will also be used for investigations of the solar X-ray corona and solar energetic particles (SEP), both in the cruise phase and the passes of the Earth, Venus and Mercury before the arrival at Mercury's orbit, and the final science phase at Mercury's orbit. These observations provide the first-ever opportunity for in-situ measurements of the propagation of SEPs, their interactions with the interplanetary magnetic field, and space weather phenomena in multiple locations throughout the inner solar system far away from the Earth, and more extensively at Mercury's orbit. In this paper we describe the scientific objectives, design and calibrations, operational principles, and scientific performance of the final SIXS instrument launched to the mission to planet Mercury onboard BepiColombo. We also provide the first analysis results of science observations with SIXS, that were made during the Near-Earth Commissioning Phase and early cruise phase operations in 2018-19, including the background X-ray sky observations and "first light" observations of the Sun with the SIXS X-ray detection system (SIXS-X), and in-situ energetic electron and proton observations with the SIXS Particle detection system (SIXS-P).Peer reviewe
    corecore