1,856 research outputs found
Human Ecology, Process Philosophy and the Global Ecological Crisis
This paper argues that human ecology, based on process philosophy and challenging scientific materialism, is required to effectively confront the global ecological crisis now facing us
Recommended from our members
Structural analysis of a trimeric assembly of the mitochondrial dynamin-like GTPase Mgm1.
The fusion of inner mitochondrial membranes requires dynamin-like GTPases, Mgm1 in yeast and OPA1 in mammals, but how they mediate membrane fusion is poorly understood. Here, we determined the crystal structure of Saccharomyces cerevisiae short Mgm1 (s-Mgm1) in complex with GDP. It revealed an N-terminal GTPase (G) domain followed by two helix bundles (HB1 and HB2) and a unique C-terminal lipid-interacting stalk (LIS). Dimers can form through antiparallel HB interactions. Head-to-tail trimers are built by intermolecular interactions between the G domain and HB2-LIS. Biochemical and in vivo analyses support the idea that the assembly interfaces observed here are native and critical for Mgm1 function. We also found that s-Mgm1 interacts with negatively charged lipids via both the G domain and LIS. Based on these observations, we propose that membrane targeting via the G domain and LIS facilitates the in cis assembly of Mgm1, potentially generating a highly curved membrane tip to allow inner membrane fusion
Phylogenetic structure and formation mechanism of shrub communities in arid and semiarid areas of the Mongolian Plateau
The mechanisms of species coexistence within a community have always been the focus in ecological research. Community phylogenetic structure reflects the relationship of historical processes, regional environments, and interactions between species, and studying it is imperative to understand the formation and maintenance mechanisms of community composition and biodiversity. We studied the phylogenetic structure of the shrub communities in arid and semiarid areas of the Mongolian Plateau. First, the phylogenetic signals of four plant traits (height, canopy, leaf length, and leaf width) of shrubs and subshrubs were measured to determine the phylogenetic conservation of these traits. Then, the net relatedness index (NRI) of shrub communities was calculated to characterize their phylogenetic structure. Finally, the relationship between the NRI and current climate and paleoclimate (since the Last Glacial Maximum, LGM) factors was analyzed to understand the formation and maintenance mechanisms of these plant communities. We found that desert shrub communities showed a trend toward phylogenetic overdispersion; that is, limiting similarity was predominant in arid and semiarid areas of the Mongolian Plateau despite the phylogenetic structure and formation mechanisms differing across habitats. The typical desert and sandy shrub communities showed a significant phylogenetic overdispersion, while the steppified desert shrub communities showed a weak phylogenetic clustering. It was found that mean winter temperature (i.e., in the driest quarter) was the major factor limiting steppified desert shrub phylogeny distribution. Both cold and drought (despite having opposite consequences) differentiated the typical desert to steppified desert shrub communities. The increase in temperature since the LGM is conducive to the invasion of shrub plants into steppe grassland, and this process may be intensified by global warming
Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates.
Metal halide perovskite has emerged as a promising material for light-emitting diodes. In the past, the performance of devices has been improved mainly by optimizing the active and charge injection layers. However, the large refractive index difference among different materials limits the overall light extraction. Herein, we fabricate efficient methylammonium lead bromide light-emitting diodes on nanophotonic substrates with an optimal device external quantum efficiency of 17.5% which is around twice of the record for the planar device based on this material system. Furthermore, optical modelling shows that a high light extraction efficiency of 73.6% can be achieved as a result of a two-step light extraction process involving nanodome light couplers and nanowire optical antennas on the nanophotonic substrate. These results suggest that utilization of nanophotonic structures can be an effective approach to achieve high performance perovskite light-emitting diodes
Suspension and Measurement of Graphene and Bi2Se3 Atomic Membranes
Coupling high quality, suspended atomic membranes to specialized electrodes
enables investigation of many novel phenomena, such as spin or Cooper pair
transport in these two dimensional systems. However, many electrode materials
are not stable in acids that are used to dissolve underlying substrates. Here
we present a versatile and powerful multi-level lithographical technique to
suspend atomic membranes, which can be applied to the vast majority of
substrate, membrane and electrode materials. Using this technique, we
fabricated suspended graphene devices with Al electrodes and mobility of 5500
cm^2/Vs. We also demonstrate, for the first time, fabrication and measurement
of a free-standing thin Bi2Se3 membrane, which has low contact resistance to
electrodes and a mobility of >~500 cm^2/Vs
Ethnobotany of dye plants in Dong communities of China
BACKGROUND: Dyes derived from plants have an extensive history of use for coloring food and clothing in Dong communities and other indigenous areas in the uplands of China. In addition to use as coloring agents, Dong communities have historically utilized dye plants for their value for enhancing the nutritive, medicinal and preservative properties of foods. However, the persistence of plant-derived dyes and associated cultural practices and traditional knowledge is threatened with rapid socio-economic change in China. Research is needed to document the ethnobotany of dye plants in indigenous communities towards their conservation and potential commercialization as a sustainable means of supporting local development initiatives. METHODS: Semi-structured surveys on plants used for coloring agents and associated traditional knowledge were conducted in fifteen Dong villages of Tongdao County in Hunan Province of South Central China during 2011–2012. Transect walks were carried out with key informants identified from semi-structured surveys to collect samples and voucher specimens for each documented plant species for taxonomic identification. RESULTS: Dong households at the study sites utilize the flowers, bark, stems, tubers and roots of 13 plant species from 9 families as dyes to color their customary clothing and food. Out of the documented plants, a total of 7 are used for coloring food, 3 for coloring clothing and 3 for both food and clothing. Documented plants consist of 3 species that yield black pigments, 3 for brownish red/russet pigments, 3 for red pigments, 2 for dark blue pigments and 2 for yellow pigments. In addition to dyes, the plants have multiple uses including medicinal, ornamental, sacrificial, edible, and for timber. CONCLUSIONS: The use of dyes derived from plants persists at the study sites for their important role in expressing Dong cultural identity through customary clothing and food. Further research is needed to evaluate the safety of dye plants, their efficacy in enhancing food items and their commercial potential. Conservation policies and management plans are called for to preserve these ethnobotanical resources in a sustainable manner that supports local livelihoods while maintaining cultural practices
The emergence of blaCTX-M-15-carrying Escherichia coli of ST131 and new sequence types in Western China
Abstract
Background
bla
CTX-M-15, the most widely distributed gene encoding extended-spectrum β-lactamases globally, was not common in China. This study was performed to characterize bla
CTX-M-15-carrying Escherichia coli in western China.
Findings
Out of 144 Escherichia coli isolates from 20 hospitals in western China, 8 were found carrying bla
CTX-M-15. bla
CTX-M-15 was carried by isolates of ST131and 5 new STs (ST3342, ST3513, ST3516, ST3517 and ST3518). The 5 new STs shared 5 identical alleles out of 7 but only had up to 2 alleles identical to ST131. bla
CTX-M-15 was located on plasmids of IncI1 (ST16) or IncFII-related group (four replicon types). The co-transfer of a few antimicrobial resistance genes including qnrA, qnrB, qnrS, qepA, aac (6′)-Ib-cr, aac (3)-II, tetA, bla
TEM and bla
OXA-1 with bla
CTX-M-15 were examined but only bla
TEM-1 was found co-transferring with bla
CTX-M-15.
Conclusions
Five new STs of E. coli and three new types of IncFII-related plasmids carrying bla
CTX-M-15 were identified. This study together with several reports suggested that bla
CTX-M-15 has emerged in China and the interruption of both vertical and horizontal transmission of bla
CTX-M-15 is required to hurdle its further spread.
</jats:sec
- …
