5 research outputs found

    The Approximate k-List Problem

    Get PDF
    We study a generalization of the k-list problem, also known as the Generalized Birthday problem. In the k-list problem, one starts with k lists of binary vectors and has to find a set of vectors – one from each list – that sum to the all-zero target vector. In our generalized Approximate k-list problem, one has to find a set of vectors that sum to a vector of small Hamming weight ω. Thus, we relax the condition on the target vector and allow for some error positions. This in turn helps us to significantly reduce the size of the starting lists, which determines the memory consumption, and the running time as a function of ω. For ω = 0, our algorithm achieves the original k-list run-time/memory consumption, whereas for ω = n/2 it has polynomial complexity. As in the k-list case, our Approximate k-list algorithm is defined for all k = 2m,m > 1. Surprisingly, we also find an Approximate 3-list algorithm that improves in the runtime exponent compared to its 2-list counterpart for all 0 < ω < n/2. To the best of our knowledge this is the first such improvement of some variant of the notoriously hard 3-list problem. As an application of our algorithm we compute small weight multiples of a given polynomial with more flexible degree than with Wagner’s algorithm from Crypto 2002 and with smaller time/memory consumption than with Minder and Sinclair’s algorithm from SODA 2009

    Attacks and Countermeasures for White-box Designs

    Get PDF
    In traditional symmetric cryptography, the adversary has access only to the inputs and outputs of a cryptographic primitive. In the white-box model the adversary is given full access to the implementation. He can use both static and dynamic analysis as well as fault analysis in order to break the cryptosystem, e.g. to extract the embedded secret key. Implementations secure in such model have many applications in industry. However, creating such implementations turns out to be a very challenging if not an impossible task. Recently, Bos et al. proposed a generic attack on white-box primitives called differential computation analysis (DCA). This attack was applied to many white-box implementations both from academia and industry. The attack comes from the area of side-channel analysis and the most common method protecting against such attacks is masking, which in turn is a form of secret sharing. In this paper we present multiple generic attacks against masked white-box implementations. We use the term “masking” in a very broad sense. As a result, we deduce new constraints that any secure white-box implementation must satisfy. Based on the new constraints, we develop a general method for protecting white-box implementations. We split the protection into two independent components: value hiding and structure hiding. Value hiding must pro- vide protection against passive DCA-style attacks that rely on analysis of computation traces. Structure hiding must provide protection against circuit analysis attacks. In this paper we focus on developing the value hiding component. It includes protection against the DCA attack by Bos et al. and protection against a new attack called algebraic attack. We present a provably secure first-order protection against the new al- gebraic attack. The protection is based on small gadgets implementing secure masked XOR and AND operations. Furthermore, we give a proof of compositional security allowing to freely combine secure gadgets. We derive concrete security bounds for circuits built using our construction

    The Approximate k-List Problem

    No full text
    We study a generalization of the k-list problem, also known as the Generalized Birthday problem. In the k-list problem, one starts with k lists of binary vectors and has to find a set of vectors – one from each list – that sum to the all-zero target vector. In our generalized Approximate k-list problem, one has to find a set of vectors that sum to a vector of small Hamming weight ω. Thus, we relax the condition on the target vector and allow for some error positions. This in turn helps us to significantly reduce the size of the starting lists, which determines the memory consumption, and the running time as a function of ω. For ω = 0, our algorithm achieves the original k-list run-time/memory consumption, whereas for ω = n/2 it has polynomial complexity. As in the k-list case, our Approximate k-list algorithm is defined for all k = 2m,m &gt; 1. Surprisingly, we also find an Approximate 3-list algorithm that improves in the runtime exponent compared to its 2-list counterpart for all 0 &lt; ω &lt; n/2. To the best of our knowledge this is the first such improvement of some variant of the notoriously hard 3-list problem. As an application of our algorithm we compute small weight multiples of a given polynomial with more flexible degree than with Wagner’s algorithm from Crypto 2002 and with smaller time/memory consumption than with Minder and Sinclair’s algorithm from SODA 2009

    The Approximate k-List Problem

    No full text
    We study a generalization of the k-list problem, also known as the Generalized Birthday problem. In the k-list problem, one starts with k lists of binary vectors and has to find a set of vectors – one from each list – that sum to the all-zero target vector. In our generalized Approximate k-list problem, one has to find a set of vectors that sum to a vector of small Hamming weight ω. Thus, we relax the condition on the target vector and allow for some error positions. This in turn helps us to significantly reduce the size of the starting lists, which determines the memory consumption, and the running time as a function of ω. For ω = 0, our algorithm achieves the original k-list run-time/memory consumption, whereas for ω = n/2 it has polynomial complexity. As in the k-list case, our Approximate k-list algorithm is defined for all k = 2m,m &gt; 1. Surprisingly, we also find an Approximate 3-list algorithm that improves in the runtime exponent compared to its 2-list counterpart for all 0 &lt; ω &lt; n/2. To the best of our knowledge this is the first such improvement of some variant of the notoriously hard 3-list problem. As an application of our algorithm we compute small weight multiples of a given polynomial with more flexible degree than with Wagner’s algorithm from Crypto 2002 and with smaller time/memory consumption than with Minder and Sinclair’s algorithm from SODA 2009.</jats:p

    Solvin k\it {k}-list problems and their impact on information set decoding

    No full text
    In dieser Arbeit wird zunächst eine Verallgemeinerung des k\it {k}-Listen Problems, dass sogenannte approximative k\it {k}-Listen Problem eingeführt und analysiert. Es werden Algorithmen zum Lösen dieses Problems entwickelt und auf Anwendungen übertragen. Es wird gezeigt, dass das approximative k\it {k}-Listen Problem effizienter gelöst werden kann wie das ursprüngliche k\it {k}-Listen Problem. Weiterhin werden in dieser Arbeit neue Algorithmen zum Dekodieren von zufälligen linearen Codes entwickelt und analysiert, wobei der beste Algorithmus eine Laufzeit von 20.0886n2^{0.0886n} besitzt. Dies ist der derzeit schnellste Algorithmus zum Dekodieren von zufälligen linearen Codes. Zuletzt wird in dieser Arbeit untersucht, wie sich dieses Resultat auf Anwendungen wie das LPN Problem oder das McEliece Kryptosystem auswirken
    corecore