3,762 research outputs found
Multiplexed readout of kinetic inductance bolometer arrays
Kinetic inductance bolometer (KIB) technology is a candidate for passive
sub-millimeter wave and terahertz imaging systems. Its benefits include
scalability into large 2D arrays and operation with intermediate cryogenics in
the temperature range of 5 -- 10 K. We have previously demonstrated the
scalability in terms of device fabrication, optics integration, and cryogenics.
In this article, we address the last missing ingredient, the readout. The
concept, serial addressed frequency excitation (SAFE), is an alternative to
full frequency-division multiplexing at microwave frequencies conventionally
used to read out kinetic inductance detectors. We introduce the concept, and
analyze the criteria of the multiplexed readout avoiding the degradation of the
signal-to-noise ratio in the presence of a thermal anti-alias filter inherent
to thermal detectors. We present a practical scalable realization of a readout
system integrated into a prototype imager with 8712 detectors. This is used for
demonstrating the noise properties of the readout. Furthermore, we present
practical detection experiments with a stand-off laboratory-scale imager.Comment: 7 pages, 6 figure
Gamma-Ray Analysis for U, Th, and K on Bulk Cutting Samples from Deep Wells in the Danish Subbasin and the North German Basin
Automated Decision-Support System for Prediction of Treatment Responders in Acute Ischemic Stroke
MRI is widely used in the assessment of acute ischemic stroke. In particular, it identifies the mismatch between hypoperfused and the permanently damaged tissue, the PWI-DWI mismatch volume. It is used to help triage patients into active or supportive treatment pathways. COMBAT Stroke is an automated software tool for estimating the mismatch volume and ratio based on MRI. Herein, we validate the decision made by the software with actual clinical decision rendered. Furthermore, we evaluate the association between treatment decisions (both automated and actual) and outcomes. COMBAT Stroke was used to determine PWI-DWI mismatch volume and ratio in 228 patients from two European multi-center stroke databases. We performed confusion matrix analysis to summarize the agreement between the automated selection and the clinical decision. Finally, we evaluated the clinical and imaging outcomes of the patients in the four entries of the confusion matrix (true positive, true negative, false negative, and false positive). About 186 of 228 patients with acute stroke underwent thrombolytic treatment, with the remaining 42 receiving supportive treatment only. Selection based on radiographic criteria using COMBAT Stroke classified 142 patients as potential candidates for thrombolytic treatment and 86 for supportive treatment; 60% sensitivity and 29% specificity. The patients deemed eligible for thrombolytic treatment by COMBAT Stroke demonstrated significantly higher rates of compromised tissue salvage, less neurological deficit, and were more likely to experience thrombus dissolving and reestablishment of normal blood flow at 24 h follow-up compared to those who were treated without substantial PWI-DWI mismatch. These results provide evidence that COMBAT Stroke, in addition to clinical assessment, may offer an optimal framework for a fast, efficient, and standardized clinical support tool to select patients for thrombolysis in acute ischemic stroke
Improving the Estimates of International Space Station (ISS) Induced K-Factor Failure Rates for On-Orbit Replacement Unit (ORU) Supportability Analyses
This is a case study on revised estimates of induced failure for International Space Station (ISS) on-orbit replacement units (ORUs). We devise a heuristic to leverage operational experience data by aggregating ORU, associated function (vehicle sub -system), and vehicle effective' k-factors using actual failure experience. With this input, we determine a significant failure threshold and minimize the difference between the actual and predicted failure rates. We conclude with a discussion on both qualitative and quantitative improvements the heuristic methods and potential benefits to ISS supportability engineering analysis
Constellation Shaping for WDM systems using 256QAM/1024QAM with Probabilistic Optimization
In this paper, probabilistic shaping is numerically and experimentally
investigated for increasing the transmission reach of wavelength division
multiplexed (WDM) optical communication system employing quadrature amplitude
modulation (QAM). An optimized probability mass function (PMF) of the QAM
symbols is first found from a modified Blahut-Arimoto algorithm for the optical
channel. A turbo coded bit interleaved coded modulation system is then applied,
which relies on many-to-one labeling to achieve the desired PMF, thereby
achieving shaping gain. Pilot symbols at rate at most 2% are used for
synchronization and equalization, making it possible to receive input
constellations as large as 1024QAM. The system is evaluated experimentally on a
10 GBaud, 5 channels WDM setup. The maximum system reach is increased w.r.t.
standard 1024QAM by 20% at input data rate of 4.65 bits/symbol and up to 75% at
5.46 bits/symbol. It is shown that rate adaptation does not require changing of
the modulation format. The performance of the proposed 1024QAM shaped system is
validated on all 5 channels of the WDM signal for selected distances and rates.
Finally, it was shown via EXIT charts and BER analysis that iterative
demapping, while generally beneficial to the system, is not a requirement for
achieving the shaping gain.Comment: 10 pages, 12 figures, Journal of Lightwave Technology, 201
Extending CKKW-merging to One-Loop Matrix Elements
We extend earlier schemes for merging tree-level matrix elements with parton
showers to include also merging with one-loop matrix elements. In this paper we
make a first study on how to include one-loop corrections, not only for events
with a given jet multiplicity, but simultaneously for several different jet
multiplicities. Results are presented for the simplest non-trivial case of
hadronic events at LEP as a proof-of-concept
- …
