107 research outputs found
Recommended from our members
Putting lives in danger? Tinker, tailor, journalist, spy: the use of journalistic cover
The Anglo-American intelligence agencies’ use of journalists as spies or propagandists and the practice of providing intelligence agents in the field with journalistic cover have been a source of controversy for many decades. This paper examines the extent to which these covert practices have taken place and whether they have put journalists’ lives in danger. This paper, drawing on various methodologies, examines a number of cases where the arrest, murder or kidnap of journalists was justified on the grounds that the journalist was a ‘spy’. This has been followed through with research using a range of sources that shows there have been many occasions when the distinction between spies and journalists has been opaque. The paper concludes that widespread use of journalistic cover by spies has put lives in danger but the extent is unquantifiable
Dietary protein recommendations to support healthy muscle ageing in the 21st Century and beyond:considerations and future directions
This review explores the evolution of dietary protein intake requirements and recommendations, with a focus on skeletal muscle remodeling to support healthy ageing based on presentations at the 2023 Nutrition Society summer conference. In this review, we describe the role of dietary protein for metabolic health and ageing muscle, explain the origins of protein and amino acid requirements, and discuss current recommendations for dietary protein intake, which currently sits at ∼0.8g·kg·-1day-1. We also critique existing (e.g., nitrogen balance) and contemporary (e.g., indicator amino acid oxidation) methods to determine protein/amino acid intake requirements and suggest that existing methods may underestimate requirements, with more contemporary assessments indicating protein recommendations may need to be increased to >1.0g·kg·-1day-1. One example of evolution in dietary protein guidance is the transition from protein requirements to recommendations. Hence, we discuss the refinement of protein/amino acid requirements for skeletal muscle maintenance with advanced age beyond simply the dose (e.g., source, type, quality, timing, pattern, nutrient co-ingestion) and explore the efficacy and sustainability of alternative protein sources beyond animal-based proteins to facilitate skeletal muscle remodeling in older age. We conclude that, whilst a growing body of research has demonstrated that animal-free protein sources can effectively stimulate support muscle remodeling in a manner that is comparable to animal-based proteins, food systems need to sustainably provide a diversity of both plant and animal source foods, not least for their protein content but other vital nutrients. Finally, we propose some priority research directions for the field of protein nutrition and healthy ageing.</p
Cytokines and Inflammatory Mediators [30-39]: 30. The LPS Stimulated Production of Interleukin-10 is not Associated with -819C/T and -592C/A Promoter Polymorphisms in Healthy Indian Subjects
Background: Interleukin-10 is a pivotal immunoregulatory cytokine with pleiotropic effects on the immune system. IL-10 promoter polymorphisms have been associated with disease susceptibility and the ability to secrete IL-10 in vitro. We suspected that the association of the widely studied -819C/T and -592C/A polymorphisms with the IL-10 production might vary between ethnic groups. Therefore, we examined the association of -819 C/T and -592 C/A promoter polymorphisms with in vitro LPS stimulated secretion of IL-10 in normal healthy Indian volunteers. Methods: Peripheral blood was collected from 103 healthy volunteers and diluted whole blood cultures were set up with 100 ng/ml of LPS as stimulant: supernatant was collected at 24 h and IL-10 levels were assayed by ELISA. Genotyping was done for -819C/T polymorphism in 101 individuals and -592C/A polymorphism in 68 individuals by polymerase chain reaction followed by RFLP. The differences in IL-10 production between the genotypes were analysed by ANOVA. Results: There were 30, 47 and 24 individuals with the CC, CT and TT genotypes with a minor allele (T) frequency of 47% for the -819C/T polymorphism. The CC and TT genotypes at position -819 were strongly associated with CC and AA genotypes at -592 position suggestive of strong linkage disequilibrium. There was no association between the -819 genotype and the in vitro LPS stimulated IL-10 levels. Conclusions: The -819C/T and the -592 C/A polymorphisms of the IL-10 promoter region are not significantly associated with LPS stimulated IL-10 production healthy Indian subjects. Disclosure statement: All authors have declared no conflicts of interes
Prolonged, granulocyte-macrophage colony-stimulating factor-dependent, neutrophil survival following rheumatoid synovial fibroblast activation by IL-17 and TNFalpha
INTRODUCTION: A surprising feature of the inflammatory infiltrate in rheumatoid arthritis is the accumulation of neutrophils within synovial fluid and at the pannus cartilage boundary. Recent findings suggest that a distinct subset of IL-17-secreting T-helper cells (T(H)17 cells) plays a key role in connecting the adaptive and innate arms of the immune response and in regulating neutrophil homeostasis. We therefore tested the hypothesis that synovial fibroblasts bridge the biological responses that connect T(H)17 cells to neutrophils by producing neutrophil survival factors following their activation with IL-17. METHODS: IL-17-expressing cells in the rheumatoid synovium, and IL-17-expressing cells in the peripheral blood, and synovial fluid were examined by confocal microscopy and flow cytometry, respectively. Peripheral blood neutrophils were cocultured either with rheumatoid arthritis synovial fibroblasts (RASF) or with conditioned medium from RASF that had been pre-exposed to recombinant human IL-17, TNFα or a combination of the two cytokines. Neutrophils were harvested and stained with the vital mitochondrial dye 3,3'-dihexyloxacarbocyanine iodide before being enumerated by flow cytometry. RESULTS: T(H)17-expressing CD4(+ )cells were found to accumulate within rheumatoid synovial tissue and in rheumatoid arthritis synovial fluid. RASF treated with IL-17 and TNFα (RASF(IL-17/TNF)) effectively doubled the functional lifespan of neutrophils in coculture. This was entirely due to soluble factors secreted from the fibroblasts. Specific depletion of granulocyte–macrophage colony-stimulating factor from RASF(IL-17/TNF)-conditioned medium demonstrated that this cytokine accounted for approximately one-half of the neutrophil survival activity. Inhibition of phosphatidylinositol-3-kinase and NF-κB pathways showed a requirement for both signalling pathways in RASF(IL-17/TNF)-mediated neutrophil rescue. CONCLUSION: The increased number of neutrophils with an extended lifespan found in the rheumatoid synovial microenvironment is partly accounted for by IL-17 and TNFα activation of synovial fibroblasts. T(H)17-expressing T cells within the rheumatoid synovium are likely to contribute significantly to this effect
Progression of atypical parkinsonian syndromes: PROSPECT-M-UK study implications for clinical trials
The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based endpoint selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy, corticobasal syndrome, multiple system atrophy and related disorders, to compare candidate clinical trial endpoints. In this multicentre United Kingdom study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and magnetic resonance imaging assessments at baseline, six and twelve-months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, progressive supranuclear palsy-subcortical (progressive supranuclear palsy-parkinsonism and progressive gait freezing subtypes), progressive supranuclear palsy-cortical (progressive supranuclear palsy-frontal, progressive supranuclear palsy-speech-and-language, and progressive supranuclear palsy-corticobasal syndrome subtypes), multiple system atrophy-parkinsonism, multiple system atrophy-cerebellar, corticobasal syndrome with and without evidence of Alzheimer’s disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling, and sample sizes for clinical trials of disease modifying agents, according to group and assessment type. Two hundred forty-three people were recruited (117 progressive supranuclear palsy, 68 corticobasal syndrome, 42 multiple system atrophy and 16 indeterminate; 138 [56.8%] male; age at recruitment 68.7 ± 8.61 years). One hundred fifty-nine completed six-month assessment (82 progressive supranuclear palsy, 27 corticobasal syndrome, 40 multiple system atrophy and 10 indeterminate) and 153 completed twelve-month assessment (80 progressive supranuclear palsy, 29 corticobasal syndrome, 35 multiple system atrophy and 9 indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N &lt; 100 required for one-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease specific. In conclusion, phenotypic variance within progressive supranuclear palsy, corticobasal syndrome and multiple system atrophy is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial endpoints, from potential functional, cognitive, clinical or neuroimaging measures of disease progression
Diagnosis Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome
IMPORTANCE: Patients with atypical parkinsonian syndromes (APS), including progressive supranuclear palsy (PSP), corticobasal syndrome (CBS) and multiple system atrophy (MSA), may be difficult to distinguish in early stages and are often misdiagnosed as Parkinson’s disease (PD). The diagnostic criteria for PSP have been updated to encompass a range of clinical subtypes, but have not been prospectively studied.
OBJECTIVE: To define the distinguishing features of PSP and CBS, and to assess their usefulness in facilitating early diagnosis and separation from PD.
DESIGN, SETTING, PARTICIPANTS: Cohort study which recruited APS and PD patients from movement disorder clinics across the UK from September 2015 to December 2018, and will follow up patients over 5 years. APS patients were stratified into PSP-Richardson syndrome, PSP-subcortical (including PSP-parkinsonism and PSP-progressive gait freezing cases), PSP-cortical (including PSP-frontal and PSP/CBS overlap cases), MSA-parkinsonism, MSA-cerebellar, CBS-Alzheimer’s and CBS-non-Alzheimer’s groups.
MAIN OUTCOME MEASURES: Baseline group comparisons were conducted using: 1) Clinical trajectory; 2) Cognitive screening scales; 3) Serum neurofilament light chain (NF-L); 4) TRIM11, ApoE and MAPT genotypes; 5) Volumetric MRI.
RESULTS: 222 APS cases (101 PSP, 55 MSA, 40 CBS and 26 indeterminate) were recruited (58% male; mean age at recruitment, 68.3 years). Age-matched controls (n=76) and PD cases (n=1967) were also included. Concordance between the ante-mortem clinical diagnosis and pathological diagnosis was achieved in 12/13 (92%) of PSP and CBS cases coming to post-mortem. Applying the MDS PSP diagnostic criteria almost doubled the number of patients diagnosed with PSP. 49/101 (49%) of reclassified PSP patients did not have classical PSP-Richardson syndrome. PSP-subcortical patients had a longer diagnostic latency and a more benign clinical trajectory than PSP-Richardson syndrome and PSP-cortical (p<0.05). PSP-subcortical was distinguished from PSP-cortical and PSP-Richardson syndrome by cortical volumetric MRI measures (AUC 0.84-0.89), cognitive profile (AUC 0.80-0.83), serum NF-L (AUC 0.75-0.83) and TRIM11 rs564309 genotype. Midbrain atrophy was a common feature of all PSP subtypes. 8/17 (47%) of CBS patients with CSF analysis were identified as having CBS-Alzheimer’s. CBS-Alzheimer’s patients had a longer diagnostic latency, relatively benign clinical trajectory, greater cognitive impairment and higher APOE-ε4 allele frequency than CBS-non-Alzheimer’s (p<0.05, AUC 0.80-0.87). Serum NF-L levels distinguished PD from PSP and CBS (p<0.05, AUC 0.80).
CONCLUSIONS AND RELEVANCE: Clinical, therapeutic and epidemiological studies focusing on PSP-Richardson syndrome are likely to miss a large number of patients with underlying PSP-tau pathology. CSF analysis defines a distinct CBS-Alzheimer’s subgroup. PSP and CBS subtypes have distinct characteristics that may enhance their early diagnosis
Brain Networks Route Neurodegeneration Patterns in Patients with Progressive Supranuclear Palsy
Background: Progressive supranuclear palsy (PSP) is a neurodegenerative disease driven by 4-repeat τ pathology, which is thought to propagate across interconnected neurons. Objectives: We hypothesized that interconnected brain regions exhibit correlated atrophy, and that atrophy propagates network-like from fast-declining epicenters to connected regions in PSP. Methods: We combined resting-state functional magnetic resonance imaging (fMRI) connectomics with two independent 12-month longitudinal structural magnetic resonance imaging (MRI) datasets of PSP-Richardson syndrome (PSP-RS) patients (ndiscovery/nvalidation = 114/90). MRI-based gray matter volumes were assessed for 246 regions of the Brainnetome atlas and converted to w-scores indicating local atrophy (ie, volumes adjusted for age, sex, and intracranial volume based on regression models determined in a sample of 377 healthy amyloid- and τ-negative controls from the Alzheimer's Disease Neuroimaging Initiative [ADNI]). Annual volume changes were determined for each Brainnetome region of interest using longitudinal structural MRI. Resting-state fMRI from 69 ADNI healthy controls was used to determine a connectivity template. Results: We observed pronounced atrophy and volume decline in the frontal lobe and subcortical regions bilaterally. Correlated atrophy and volume changes were found among interconnected brain regions, with regions with severe atrophy or rapid decline being strongly connected to similarly affected areas, whereas minimally affected regions were connected to less affected areas. Connectivity patterns of atrophy epicenters predicted patient level atrophy and volume decline. Conclusions: Our findings show that key subcortical and frontal brain regions undergo atrophy in PSP-RS and that gray matter atrophy expands across interconnected brain regions, supporting the view that neurodegeneration patterns may follow the trans-neuronal τ propagation pattern in PSP-RS. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Progression of atypical parkinsonian syndromes: PROSPECT-M-UK study implications for clinical trials
Supplementary data is available online at https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awad105/7091433#supplementary-data .Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.Copyright © The Author(s) 2023. The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points.
In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer’s disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type.
Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific.
In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.The Progressive Supranuclear Palsy–Corticobasal Syndrome–Multiple System Atrophy (PROSPECT-M-UK) study is supported by grants for PROSPECT, cerebrospinal fluid biomarker measurements, and PROSPECT magnetic resonance imaging and Sara Koe Fellowship grants from the PSP Association UK, CBD Solutions, the MSA Trust, the Wellcome Trust (103838; 220258); the NIHR Cambridge Biomedical Research Centre and Cambridge Brain Bank (BRC 1215-20014; NIHR203312: The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care); Cambridge Centre for Parkinson-Plus; Medical Research Council (SUAG/092 116768); and the NIHR UCLH Biomedical Research Centre. Queen Square Brain Bank is supported by the Reta Lila Weston Institute for Neurological Studies and the MRC. The fluid biomarker measurements were supported in part by the UK Dementia Research Institute at UCL and a multiuser equipment grant from Wellcome Trust. The Cambridge Brain Bank is part of the Cambridge Human research Tissue Bank funded by the Biomedical Research Council. The Oxford Brain Bank is supported by the MRC, Brains for Dementia Research (Alzheimer’s Society and Alzheimer’s Research UK), and the NIHR Oxford Biomedical Research Centre. In addition, this study was supported by the Medical Research Council (MRC 548211) (Dr Jabbari); the Association of British Neurologists Clinical Research Training Fellowships (Dr Holland, Dr Goh and Dr Chelban); the MSA Trust (Dr Chelban, Dr Goh); Guarantors of Brain (Dr Chelban); CBD Solutions (Dr Revesz, and Dr Morris); the NIHR Oxford Health Clinical Research Facility (Dr Klein); the NIHR Queen Square Biomedical Research Centre based at UCLH (Dr Revesz and Dr Jaunmuktane) a Wallenberg Academy fellowship (Dr Zetterberg); the Monument Trust Discovery Award from Parkinson’s UK (Dr Hu). Dr Bocchetta is supported by a Fellowship award from the Alzheimer’s Society, UK (AS-JF-19a-004-517). Dr Bocchetta’s work was also supported by the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK. Professor Rohrer is supported by the Miriam Marks Brain Research UK Senior Fellowship and has received funding from an MRC Clinician Scientist Fellowship (MR/M008525/1) and the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH). Professor Zetterberg is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Research Council (#681712), Swedish State Support for Clinical Research (#ALFGBG-720931), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016862), the AD Strategic Fund and the Alzheimer's Association (#ADSF-21-831376-C, #ADSF-21-831381-C and #ADSF-21-831377-C), the Olav Thon Foundation, the Erling-Persson Family Foundation, Stiftelsen för Gamla Tjänarinnor, Hjärnfonden, Sweden (#FO2019-0228), the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 860197 (MIRIADE), European Union Joint Program for Neurodegenerative Disorders (JPND2021-00694), and the UK Dementia Research Institute at UCL. Professor Roncaroli’s work is supported by The Manchester Brain Bank, which is part of BDR, jointly funded by Alzheimer’s Society and Alzheimer’s Research UK. For the purpose of open access, the authors have applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission, under a Creative Commons Attribution 4.0 International License
Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis.
We examined the role of repeat expansions in the pathogenesis of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) by analyzing whole-genome sequence data from 2,442 FTD/ALS patients, 2,599 Lewy body dementia (LBD) patients, and 3,158 neurologically healthy subjects. Pathogenic expansions (range, 40-64 CAG repeats) in the huntingtin (HTT) gene were found in three (0.12%) patients diagnosed with pure FTD/ALS syndromes but were not present in the LBD or healthy cohorts. We replicated our findings in an independent collection of 3,674 FTD/ALS patients. Postmortem evaluations of two patients revealed the classical TDP-43 pathology of FTD/ALS, as well as huntingtin-positive, ubiquitin-positive aggregates in the frontal cortex. The neostriatal atrophy that pathologically defines Huntington's disease was absent in both cases. Our findings reveal an etiological relationship between HTT repeat expansions and FTD/ALS syndromes and indicate that genetic screening of FTD/ALS patients for HTT repeat expansions should be considered
Neurofilament light levels predict clinical progression and death in multiple system atrophy
Disease-modifying treatments are currently being trialed in multiple system atrophy (MSA). Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data in multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in MSA. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study we recruited cross-sectional and longitudinal cases in multicentre European set-up. Plasma and cerebrospinal fluid neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; ROC analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease NfL levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival, and degree of brain atrophy than the NfL rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression, and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.European Union’s Horizon 2020 research and innovation programm
- …
