9 research outputs found

    Anyon Statistics and the Witten Index

    Get PDF
    Using the theory of supersymmetric anyons, I extend the definition of the Witten index to 2+1 dimensions so as to accommodate the existence of anyon spin and statistics. I then demonstrate that, although in general the index receives irrational and complex contributions from anyonic states, the overall index is always integral, and I consider some of the implications and interpretations of this result.Comment: 10 pages, harvmac, no figures; revised to elaborate on two detail

    Solution of the Three--Anyon Problem

    Get PDF
    We solve, by separation of variables, the problem of three anyons with a harmonic oscillator potential. The anyonic symmetry conditions from cyclic permutations are separable in our coordinates. The conditions from two-particle transpositions are not separable, but can be expressed as reflection symmetry conditions on the wave function and its normal derivative on the boundary of a circle. Thus the problem becomes one-dimensional. We solve this problem numerically by discretization. NN-point discretization with very small NN is often a good first approximation, on the other hand convergence as NN\to\infty is sometimes very slow.Comment: 15 pages, LaTeX2.0

    Generalized Fock Spaces, New Forms of Quantum Statistics and their Algebras

    Get PDF
    We formulate a theory of generalized Fock spaces which underlies the different forms of quantum statistics such as ``infinite'', Bose-Einstein and Fermi-Dirac statistics. Single-indexed systems as well as multi-indexed systems that cannot be mapped into single-indexed systems are studied. Our theory is based on a three-tiered structure consisting of Fock space, statistics and algebra. This general formalism not only unifies the various forms of statistics and algebras, but also allows us to construct many new forms of quantum statistics as well as many algebras of creation and destruction operators. Some of these are : new algebras for infinite statistics, q-statistics and its many avatars, a consistent algebra for fractional statistics, null statistics or statistics of frozen order, ``doubly-infinite'' statistics, many representations of orthostatistics, Hubbard statistics and its variations.Comment: This is a revised version of the earlier preprint: mp_arc 94-43. Published versio

    Gauge-Invariant Quasi-Free States on the Algebra of the Anyon Commutation Relations

    Get PDF
    Let X=R2X=\mathbb R^2 and let qCq\in\mathbb C, q=1|q|=1. For x=(x1,x2)x=(x^1,x^2) and y=(y1,y2)y=(y^1,y^2) from X2X^2, we define a function Q(x,y)Q(x,y) to be equal to qq if x1y1x^1y^1, and to q\Re q if x1=y1x^1=y^1. Let x+\partial_x^+, x\partial_x^- (xXx\in X) be operator-valued distributions such that x+\partial_x^+ is the adjoint of x\partial_x^-. We say that x+\partial_x^+, x\partial_x^- satisfy the anyon commutation relations (ACR) if x+y+=Q(y,x)y+x+\partial^+_x\partial_y^+=Q(y,x)\partial_y^+\partial_x^+ for xyx\ne y and xy+=δ(xy)+Q(x,y)y+x\partial^-_x\partial_y^+=\delta(x-y)+Q(x,y)\partial_y^+\partial^-_x for (x,y)X2(x,y)\in X^2. In particular, for q=1q=1, the ACR become the canonical commutation relations and for q=1q=-1, the ACR become the canonical anticommutation relations. We define the ACR algebra as the algebra generated by operator-valued integrals of x+\partial_x^+, x\partial_x^-. We construct a class of gauge-invariant quasi-free states on the ACR algebra. Each state from this class is completely determined by a positive self-adjoint operator TT on the real space L2(X,dx)L^2(X,dx) which commutes with any operator of multiplication by a bounded function ψ(x1)\psi(x^1). In the case q0\Re q0), we discuss the corresponding particle density ρ(x):=x+x\rho(x):=\partial_x^+\partial_x^-. For q(0,1]\Re q\in(0,1], using a renormalization, we rigorously define a vacuum state on the commutative algebra generated by operator-valued integrals of ρ(x)\rho(x). This state is given by a negative binomial point process. A scaling limit of these states as κ\kappa\to\infty gives the gamma random measure, depending on parameter q\Re q

    Thermostatistics of deformed bosons and fermions

    Full text link
    Based on the q-deformed oscillator algebra, we study the behavior of the mean occupation number and its analogies with intermediate statistics and we obtain an expression in terms of an infinite continued fraction, thus clarifying successive approximations. In this framework, we study the thermostatistics of q-deformed bosons and fermions and show that thermodynamics can be built on the formalism of q-calculus. The entire structure of thermodynamics is preserved if ordinary derivatives are replaced by the use of an appropriate Jackson derivative and q-integral. Moreover, we derive the most important thermodynamic functions and we study the q-boson and q-fermion ideal gas in the thermodynamic limit.Comment: 14 pages, 2 figure

    An explicit realization of fractional statistics in one dimension

    Get PDF
    An explicit realization of anyons is provided, using the three-body Calogero model. The fact that in the coupling domain, 1/4<g<0-1/4<g<0, the angular spectrum can have a band structure, leads to the manifestation of the desired phase in the wave function, under the exchange of the paticles. Concurrently, the momentum corresponding to the angular variable is quantized, exactly akin to the relative angular momentum quantization in two dimensional anyonic systemComment: 12 page
    corecore