3,180 research outputs found
Differential approximation for Kelvin-wave turbulence
I present a nonlinear differential equation model (DAM) for the spectrum of
Kelvin waves on a thin vortex filament. This model preserves the original
scaling of the six-wave kinetic equation, its direct and inverse cascade
solutions, as well as the thermodynamic equilibrium spectra. Further, I extend
DAM to include the effect of sound radiation by Kelvin waves. I show that,
because of the phonon radiation, the turbulence spectrum ends at a maximum
frequency where
is the total energy injection rate, is the speed of sound and
is the quantum of circulation.Comment: Prepared of publication in JETP Letter
Solution to the twin image problem in holography
While the invention of holography by Dennis Gabor truly constitutes an
ingenious concept, it has ever since been troubled by the so called twin image
problem limiting the information that can be obtained from a holographic
record. Due to symmetry reasons there are always two images appearing in the
reconstruction process. Thus, the reconstructed object is obscured by its
unwanted out of focus twin image. Especially for emission electron as well as
for x- and gamma-ray holography, where the source-object distances are small,
the reconstructed images of atoms are very close to their twin images from
which they can hardly be distinguished. In some particular instances only,
experimental efforts could remove the twin images. More recently, numerical
methods to diminish the effect of the twin image have been proposed but are
limited to purely absorbing objects failing to account for phase shifts caused
by the object. Here we show a universal method to reconstruct a hologram
completely free of twin images disturbance while no assumptions about the
object need to be imposed. Both, amplitude and true phase distributions are
retrieved without distortion
Stress corrosion in titanium alloys and other metallic materials
Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC
SuperB: a linear high-luminosity B Factory
This paper is based on the outcome of the activity that has taken place
during the recent workshop on "SuperB in Italy" held in Frascati on November
11-12, 2005. The workshop was opened by a theoretical introduction of Marco
Ciuchini and was structured in two working groups. One focused on the machine
and the other on the detector and experimental issues.
The present status on CP is mainly based on the results achieved by BaBar and
Belle. Estabilishment of the indirect CP violation in B sector in 2001 and of
the direct CP violation in 2004 thanks to the success of PEP-II and KEKB e+e-
asymmetric B Factories operating at the center of mass energy corresponding to
the mass of the Y(4s). With the two B Factories taking data, the Unitarity
Triangle is now beginning to be overconstrained by improving the measurements
of the sides and now also of the angles alpha, and gamma. We are also in
presence of the very intriguing results about the measurements of sin(2 beta)
in the time dependent analysis of decay channels via penguin loops, where b -->
s sbar s and b --> s dbar d. Tau physics, in particular LFV search, as well as
charm and ISR physics are important parts of the scientific program of a SuperB
Factory. The physics case together with possible scenarios for the high
luminosity SuperB Factory based on the concepts of the Linear Collider and the
related experimental issues are discussed.Comment: 22 pages, 22 figures, INFN Roadmap Repor
Many pion decays of rho(770) and omega(782) mesons in chiral theory
The decays rho(770) to 4 pi and omega(782) to 5pi are considered in detail in
the approach based on the Weinberg Lagrangian obtained upon the nonlinear
realization of chiral symmetry, added with the term induced by the anomalous
Lagrangian of Wess and Zumino. The partial widths and excitation curves of the
decays rho^0 to 2 pi^+ 2 pi^-, pi^+ pi^- 2 pi^0, rho^{+-} to 2 pi^{+-} pi^{-+}
pi^0, rho^(+-} to pi^(+-} 3 pi^0 are evaluated for e^+e^- annihilation,
photoproduction and tau lepton decays. The results of calculations are compared
with the recent CMD-2 data on the decay rho^0 to 2 pi^+ 2 pi^- observed in
e^+e^- annihilation. The omega to 5 pi decay widths and excitation curves in
e^+e^- annihilation are obtained. The angular distributions for various
combinations of the final pions in the decays rho to 4 pi and omega to 5 pi are
written. The perspectives of the experimental study of the above decays in
e^+e^- annihilation, tau lepton decays and photoproduction are discussed.Comment: Revtex, 32 pages including 11 ps figures. Replaced to fit the version
published in Phys. Rev. D. Material rearranged, clarifying remarks and
references added, typos fixe
Back-reaction and effective acceleration in generic LTB dust models
We provide a thorough examination of the conditions for the existence of
back-reaction and an "effective" acceleration (in the context of Buchert's
averaging formalism) in regular generic spherically symmetric
Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical
comoving domains, we verify rigorously the fulfillment of these conditions
expressed in terms of suitable scalar variables that are evaluated at the
boundary of every domain. Effective deceleration necessarily occurs in all
domains in: (a) the asymptotic radial range of models converging to a FLRW
background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c)
LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating
domains are proven to exist in the following scenarios: (i) central vacuum
regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial
range of models converging to a FLRW background, (iv) the asymptotic radial
range of models converging to a Minkowski vacuum and (v) domains near and/or
intersecting a non-simultaneous big bang. All these scenarios occur in
hyperbolic models with negative averaged and local spatial curvature, though
scenarios (iv) and (v) are also possible in low density regions of a class of
elliptic models in which local spatial curvature is negative but its average is
positive. Rough numerical estimates between -0.003 and -0.5 were found for the
effective deceleration parameter. While the existence of accelerating domains
cannot be ruled out in models converging to an Einstein de Sitter background
and in domains undergoing gravitational collapse, the conditions for this are
very restrictive. The results obtained may provide important theoretical clues
on the effects of back-reaction and averaging in more general non-spherical
models.Comment: Final version accepted for publication in Classical and Quantum
Gravity. 47 pages in IOP LaTeX macros, 12 pdf figure
Quasi-stationary States of Two-Dimensional Electron Plasma Trapped in Magnetic Field
We have performed numerical simulations on a pure electron plasma system
under a strong magnetic field, in order to examine quasi-stationary states that
the system eventually evolves into. We use ring states as the initial states,
changing the width, and find that the system evolves into a vortex crystal
state from a thinner-ring state while a state with a single-peaked density
distribution is obtained from a thicker-ring initial state. For those
quasi-stationary states, density distribution and macroscopic observables are
defined on the basis of a coarse-grained density field. We compare our results
with experiments and some statistical theories, which include the
Gibbs-Boltzmann statistics, Tsallis statistics, the fluid entropy theory, and
the minimum enstrophy state. From some of those initial states, we obtain the
quasi-stationary states which are close to the minimum enstrophy state, but we
also find that the quasi-stationary states depend upon initial states, even if
the initial states have the same energy and angular momentum, which means the
ergodicity does not hold.Comment: 9 pages, 7 figure
Measurement of CP Asymmetries and Branching Fractions in Charmless Two-Body B-Meson Decays to Pions and Kaons
We present improved measurements of CP-violation parameters in the decays
, , and , and of
the branching fractions for and . The
results are obtained with the full data set collected at the
resonance by the BABAR experiment at the PEP-II asymmetric-energy factory
at the SLAC National Accelerator Laboratory, corresponding to
million pairs. We find the CP-violation parameter values and
branching fractions where in each case, the first uncertainties are statistical
and the second are systematic. We observe CP violation with a significance of
6.7 standard deviations for and 6.1 standard deviations for
, including systematic uncertainties. Constraints on the
Unitarity Triangle angle are determined from the isospin relations
among the rates and asymmetries. Considering only the solution
preferred by the Standard Model, we find to be in the range
at the 68% confidence level.Comment: 18 pages, 11 postscript figures, submitted to Phys. Rev.
- …
