63 research outputs found

    Pollinator Community Assembly Tracks Changes in Floral Resources as Restored Hedgerows Mature in Agricultural Landscapes

    Get PDF
    Intensive agriculture reduces wild pollinator abundance, diversity and pollination services, while depending critically on wild pollinators for crop pollination. Floral enhancements such as hedgerows (native, perennial flowering trees and shrubs) can enhance pollinator colonization, persistence, occupancy, and species richness within intensive agricultural landscapes. However, little is known about the specific features of hedgerows that promote pollinator communities in such landscapes. Understanding how pollinator communities respond to local changes in site conditions as hedgerows mature, such as the availability of floral or nesting resources, can help guide the design of more effective hedgerows that promote pollinators and/or pollination services. In an intensively-managed agricultural region of California, we found that pollinator community attributes responded principally to the enhancement of floral diversity as hedgerows mature, as well as to surrounding natural habitat. Once hedgerows matured, this relationship leveled off, suggesting either saturation of community assembly processes, or greater importance of floral density/display relative to diversity. Although we did not find any relationships between measures of pollinator community diversity and nesting resources, such resources are notably difficult to measure. Surrounding natural habitat also affected species and functional richness at hedgerows, particularly for solitary bees that nest above ground. Such species are known to be particularly sensitive to the negative effects of agriculture. Thus, hedgerows in combination with natural habitat may reverse some of the community disassembly provoked by intensive agriculture

    Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture

    Get PDF
    Widespread evidence of pollinator declines has led to policies supporting habitat restoration including in agricultural landscapes. Yet, little is yet known about the effectiveness of these restoration techniques for promoting stable populations and communities of pollinators, especially in intensively managed agricultural landscapes. Introducing floral resources, such as flowering hedgerows, to enhance intensively cultivated agricultural landscapes is known to increase the abundances of native insect pollinators in and around restored areas. Whether this is a result of local short-term concentration at flowers or indicative of true increases in the persistence and species richness of these communities remains unclear. It is also unknown whether this practice supports species of conservation concern (e.g., those with more specialized dietary requirements). Analyzing occupancies of native bees and syrphid flies from 330 surveys across 15 sites over eight years, we found that hedgerow restoration promotes rates of between-season persistence and colonization as compared with unrestored field edges. Enhanced persistence and colonization, in turn, led to the formation of more species-rich communities. We also find that hedgerows benefit floral resource specialists more than generalists, emphasizing the value of this restoration technique for conservation in agricultural landscapes

    Sympatric and Allopatric Divergence of MHC Genes in Threespine Stickleback

    Get PDF
    Parasites can strongly affect the evolution of their hosts, but their effects on host diversification are less clear. In theory, contrasting parasite communities in different foraging habitats could generate divergent selection on hosts and promote ecological speciation. Immune systems are costly to maintain, adaptable, and an important component of individual fitness. As a result, immune system genes, such as those of the Major Histocompatability Complex (MHC), can change rapidly in response to parasite-mediated selection. In threespine stickleback (Gasterosteus aculeatus), as well as in other vertebrates, MHC genes have been linked with female mating preference, suggesting that divergent selection acting on MHC genes might influence speciation. Here, we examined genetic variation at MHC Class II loci of sticklebacks from two lakes with a limnetic and benthic species pair, and two lakes with a single species. In both lakes with species pairs, limnetics and benthics differed in their composition of MHC alleles, and limnetics had fewer MHC alleles per individual than benthics. Similar to the limnetics, the allopatric population with a pelagic phenotype had few MHC alleles per individual, suggesting a correlation between MHC genotype and foraging habitat. Using a simulation model we show that the diversity and composition of MHC alleles in a sympatric species pair depends on the amount of assortative mating and on the strength of parasite-mediated selection in adjacent foraging habitats. Our results indicate parallel divergence in the number of MHC alleles between sympatric stickleback species, possibly resulting from the contrasting parasite communities in littoral and pelagic habitats of lakes

    Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    Get PDF
    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments

    Multi-species interactions and the evolution of biological systems

    No full text
    In this thesis I develop several models examining how genetic evolution can affect evolutionary processes at a broader scale. First, I ask how evolution would proceed at a locus that governs the mutation rate between alleles mediating interactions between hosts and parasites. By relaxing several simplifying assumptions I am able to explore the affects of sex and recombination. I find that, when the modifier locus is completely linked, the mutation rate evolves toward the optimum rate. With looser linkage, however, lower mutation rates evolved. This work can potentially explain the high rates of antigenic switching observed in many asexual taxa. Second, I investigate how ploidy levels and the genetic model underlying species interactions affect how evolution proceeds from a free-living to a parasitic life-history. I find that the transition to parasitism occurs over a broader range of parameters when the parasite is haploid. The role of host ploidy is more complicated, depending on the model governing host-parasite interactions. These results provide a first characterization of how genetic architecture affects selection on life-history in antagonistic species interactions. Third, I develop a model of sexual selection in an environment with spatial variation in the carrying capacity, but no variation in resource type. I show that, when searching for a mate is costly, this variation can stabilize demographic fluctuations, facilitating long-term coexistence of species differing only in sexual traits. This is the first study to demonstrate the existence of conditions under which sexual selection alone can promote the long-term coexistence of ecologically equivalent species in sympatry. Finally, I develop a model characterizing the effects of mating preferences on species interactions in hybrid zones. I find that the spatial distribution of genotypes observed in many "mosaic" hybrid zones might be better explained by species-specific differences in mating than by differences in ecology (the common explanation). In addition, I develop a statistical method that can be applied to empirical hybrid zone data to estimate how "mosaic" the hybrid zone is. I test this statistic on data from the Mytilus edulis and M. galloprovincialis hybrid zone.Science, Faculty ofZoology, Department ofGraduat

    Assortative mating and spatial structure in hybrid zones

    No full text
    The spatial genetic composition of hybrid zones exhibits a range of possible patterns, with many characterized by patchy distributions. While several hypothetical explanations exist for the maintenance of these "mosaic" hybrid zones, they remain virtually unexplored theoretically. Using computer simulations we investigate the roles of dispersal and assortative mating in the formation and persistence of hybrid zone structure. To quantify mosaic structure we develop a likelihood method, which we apply to simulation and empirical data. We find that long distance dispersal can lead to a patchy distribution that assortative mating can then reinforce, ultimately producing a mosaic capable of persisting over evolutionarily significant periods of time. By reducing the mating success of rare males, assortative mating creates a positive within-patch frequency-dependent selective pressure. Selection against heterozygotes can similarly create a rare-type disadvantage and we show that it can also preserve structure. We find that mosaic structure is maintained across a range of assumptions regarding the form and strength of assortative mating. Interestingly, we find that higher levels of mosaic structure are sometimes observed for intermediate assortment strengths. The high incidence of assortment documented in hybrid zones suggests that it may play a key role in stabilizing their form and structure.12 page(s

    Data from: Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species

    No full text
    1. Agriculture now constitutes 40–50% of terrestrial land use globally. By enhancing habitat suitability and connectivity, restoration within agricultural landscapes could have a major influence on biodiversity conservation. However, habitat management within intensive agricultural landscapes may primarily boost abundances of common, highly mobile generalists, rather than vulnerable or endangered species. We studied pollinator community response to small-scale habitat restoration in the intensively farmed Central Valley of California to determine whether restoration could also promote more specialized, less common, and/or less mobile species. 2. Composition of pollinator communities was assessed in five experimental and 10 control (unrestored) sites before and after restoration of native plant hedgerows over an 8-year period, using a before-after-control-impact design. 3. We characterized bee and fly species based on functional response traits [floral specialization, habitat specialization, abundance, body size, and sociality (bees only)] known to influence the response to habitat change. 4. We modelled how species occurrences changed with habitat restoration over time as modulated by their response traits. 5. We found that hedgerows not only significantly enhanced occurrences of native bee and syrphid fly species, but that as hedgerows matured, they had a greater positive effect on species that were more specialized in floral and nesting resources and smaller (less mobile). 6. Synthesis and applications. Unlike previous studies that suggest habitat restoration in agricultural landscapes only benefits mobile, generalist species, our results suggest that small-scale habitat restoration can promote species whose traits likely render them particularly vulnerable to habitat degradation. Thus, even within highly intensive agricultural landscapes, small-scale habitat restoration can be a conservation management tool. However, tailoring habitat enhancements to promote certain species or guilds may be critical for their success as a conservation intervention in agricultural landscapes

    Bee occurrence and trait data

    No full text
    Spreadsheet containing trait and occurrence data for bee species. Column names are as follows: GenusSpecies = taxonomic ID, Year = sampling year, Day = Day of the year, ypr = Years post restoration (equal to -1 for non-restored state), Presence = presence/absence of species, NestLoc = nesting location, Excavate = nesting habit, Sociality = sociality, Lecty = lecty, MeanITD = Ln(inter-tegular span distance), d = level of resource specialization, abun = species abundance
    corecore