8,474 research outputs found
Reduced Density Matrix Approach to Phononic Dissipation in Friction
Understanding mechanisms for energy dissipation from nanoparticles in contact
with large samples is a central problem in describing friction microscopically.
Calculation of the reduced density matrix appears to be the most suitable metho
to study such systems that are coupled to a large environment. In this paper
the time evolution of the reduced density matrix has been evaluated for an
arbitrary system coupled to a heat reservoir. The formalism is then applied to
study the vibrational relaxation following the stick-slip motion of a small
adsorbate on a surface. The frequency dependence of the relaxation time is also
determined.Comment: 16 pages, 3 figures (included), revte
Social marketing: Immunizing against unethical practice
A simple approach for the catalytic conversion of primary alcohols into their corresponding esters and amides, with evolution of H2 gas using in situ formed ruthenium PNP- and PNN-pincer catalysts, is presented. The evaluation showed conversions for the esterification with turnover numbers as high as 4300, and 4400 for the amidation
Form factors in B->f0(980) and D->f0(980) transitions from dispersion relations
Within the dispersion relation approach we give the double spectral
representation for space-like and time-like B-> f_0(980) and D-> f_0(980)
transition form factors in the full q^2 range. The spectral densities, being
the input of the dispersion relations, are obtained from a triangle diagram in
the relativistic quark model.Comment: Talk given at MESON 2006, Krakow, 9-13 June 200
Massive Dirac fermions and the zero field quantum Hall effect
Through an explicit calculation for a Lagrangian in quantum electrodynamics
in (2+1)-space--time dimensions (QED), making use of the relativistic Kubo
formula, we demonstrate that the filling factor accompanying the quantized
electrical conductivity for massive Dirac fermions of a single species in two
spatial dimensions is a half (in natural units) when time reversal and parity
symmetries of the Lagrangian are explicitly broken by the fermion mass term. We
then discuss the most general form of the QED Lagrangian, both for
irreducible and reducible representations of the Dirac matrices in the plane,
with emphasis on the appearance of a Chern-Simons term. We also identify the
value of the filling factor with a zero field quantum Hall effect (QHE).Comment: 15 pages. Accepted in Jour. Phys.
Progress report of the third Generation ECR ion source fabrication
Recent progress in the construction of the 3rd Generation ECR ion source at the 88" cyclotron in Berkeley is reported. Test results of a full scale prototype superconducting magnet structure, which has been described in the last ECR Ion Source Workshop, lead to an improved coil design for the 3rd Generation ECR ion source. Solenoids of the new design have been fabricated and exceeded the design field values without quench. The new sextupole coils are currently being wound and will be tested this summer. This magnet structure consists of three solenoids and six race track coils with iron poles forming the sextupole. It is described in the report along with the structural support and coil winding specifications. The coils are designed to generate a 4T axial mirror field at injection and 3T at extraction and a radial sextupole field of 2.4 T at the plasma chamber wall. The high axial magnetic field of the 3rd Generation ECR ion source influences ion beam extraction considerably and we have initiated simulations of the extraction and beam transport system in order to enhance transmission through the injection beam line of the 88" cyclotron
Optimization of ground and excited state wavefunctions and van der Waals clusters
A quantum Monte Carlo method is introduced to optimize excited state trial
wavefunctions. The method is applied in a correlation function Monte Carlo
calculation to compute ground and excited state energies of bosonic van der
Waals clusters of upto seven particles. The calculations are performed using
trial wavefunctions with general three-body correlations
Mesoscopic motion of atomic ions in magnetic fields
We introduce a semiclassical model for moving highly excited atomic ions in a
magnetic field which allows us to describe the mixing of the Landau orbitals of
the center of mass in terms of the electronic excitation and magnetic field.
The extent of quantum energy flow in the ion is investigated and a crossover
from localization to delocalization with increasing center of mass energy is
detected. It turns out that our model of the moving ion in a magnetic field is
closely connected to models for transport in disordered finite-size wires.Comment: 4 pages, 2 figures, subm. to Phys.Rev.A, Rap.Co
Time-dependent perturbation theory for vibrational energy relaxation and dephasing in peptides and proteins
Without invoking the Markov approximation, we derive formulas for vibrational
energy relaxation (VER) and dephasing for an anharmonic system oscillator using
a time-dependent perturbation theory. The system-bath Hamiltonian contains more
than the third order coupling terms since we take a normal mode picture as a
zeroth order approximation. When we invoke the Markov approximation, our theory
reduces to the Maradudin-Fein formula which is used to describe VER properties
of glass and proteins. When the system anharmonicity and the renormalization
effect due to the environment vanishes, our formulas reduce to those derived by
Mikami and Okazaki invoking the path-integral influence functional method [J.
Chem. Phys. 121 (2004) 10052]. We apply our formulas to VER of the amide I mode
of a small amino-acide like molecule, N-methylacetamide, in heavy water.Comment: 16 pages, 5 figures, 5 tables, submitted to J. Chem. Phy
QuantUM: Quantitative Safety Analysis of UML Models
When developing a safety-critical system it is essential to obtain an
assessment of different design alternatives. In particular, an early safety
assessment of the architectural design of a system is desirable. In spite of
the plethora of available formal quantitative analysis methods it is still
difficult for software and system architects to integrate these techniques into
their every day work. This is mainly due to the lack of methods that can be
directly applied to architecture level models, for instance given as UML
diagrams. Also, it is necessary that the description methods used do not
require a profound knowledge of formal methods. Our approach bridges this gap
and improves the integration of quantitative safety analysis methods into the
development process. All inputs of the analysis are specified at the level of a
UML model. This model is then automatically translated into the analysis model,
and the results of the analysis are consequently represented on the level of
the UML model. Thus the analysis model and the formal methods used during the
analysis are hidden from the user. We illustrate the usefulness of our approach
using an industrial strength case study.Comment: In Proceedings QAPL 2011, arXiv:1107.074
Radioactive ion beam development in Berkeley
Two radioactive ion beam projects are under development at the 88" Cyclotron, BEARS (Berkeley Experiment with accelerated radioactive species) and the 14O experiment. The projects are initially focused on the production of 11C and 14O, but it is planned to expand the program to 17F, 18F, 13N and 76Kr. For the BEARS project, the radioactivity is produced in form of either CO2 or N2O in a small medical 10 MeV proton cyclotron. The activity is then transported through a 300 m long He-jet line to the 88" cyclotron building, injected into the AECR-U ion source and accelerated through the 88" cyclotron to energies between 1 to 30 MeV/ nucleon. The 14O experiment is a new experiment at the 88" cyclotron to measure the energy-shape of the beta decay spectrum. For this purpose, a target transfer line and a radioactive ion beam test stand has been constructed. The radioactivity is produced in form of CO in a hot carbon target with a 20 MeV 3He from the 88" Cyclotron. The activity diffuses through an 8m long stainless steel line into the 6 GHz ECR ion source IRIS (Ion source for Radioactive ISotopes). It is then ionized and accelerated to 30 keV to mass separate the 14O and then implanted into a carbon foil. In order to optimize the on-line efficiencies of the LBNL ECR ion sources, off-line ionization efficiency studies are carried out for various gases. A summary of the ionization efficiency measurements is presented
- …
