41 research outputs found
IgG light chain-independent secretion of heavy chain dimers: consequence for therapeutic antibody production and design
Rodent monoclonal antibodies with specificity towards important biological targets are developed for therapeutic use by a process of humanisation. This process involves the creation of molecules, which retain the specificity of the rodent antibody but contain predominantly human coding sequence. Here we show that some humanised heavy chains can fold, form dimers and be secreted even in the absence of light chain. Quality control of recombinant antibody assembly in vivo is thought to rely upon folding of the heavy chain CH1 domain. This domain acts as a switch for secretion, only folding upon interaction with the light chain CL domain. We show that the secreted heavy-chain dimers contain folded CH1 domains and contribute to the heterogeneity of antibody species secreted during the expression of therapeutic antibodies. This subversion of the normal quality control process is dependent upon the heavy chain variable domain, is prevalent with engineered antibodies and can occur when only the Fab fragments are expressed. This discovery will impact on the efficient production of both humanised antibodies as well as the design of novel antibody formats
Alternative-splicing-based bicistronic vectors for ratio-controlled protein expression and application to recombinant antibody production
In the last decade polycistronic vectors have become essential tools for both basic science and gene therapy applications. In order to co-express heterologous polypeptides, different systems have been developed from Internal Ribosome Entry Site (IRES) based vectors to the use of the 2A peptide. Unfortunately, these methods are not fully suitable for the efficient and reproducible modulation of the ratio between the proteins of interest. Here we describe a novel bicistronic vector type based on the use of alternative splicing. By modifying the consensus sequence that governs splicing, we demonstrate that the ratio between the synthesized proteins could easily vary from 1 : 10 to 10 : 1. We have established this system with luciferase genes and we extended its application to the production of recombinant monoclonal antibodies. We have shown that these vectors could be used in several typical cell lines with similar efficiencies. We also present an adaptation of these vectors to hybrid alternative splicing/IRES constructs that allow a ratio-controlled expression of proteins of interest in stably transfected cell lines
