104 research outputs found
DR haplotype diversity of the cynomolgus macaque as defined by its transcriptome
The DR region of particular primate species may display allelic polymorphism and gene copy number variation (region configuration polymorphism). The sum of these distinct types of polymorphism is defined as complexity. To date, however, the DR region of cynomolgus macaques (Macaca fascicularis) has been poorly defined. Transcriptome analysis of a pedigreed colony, comprising animals from Indonesia and Indochina, revealed a total of 15 Mafa-DRA and 57 DRB alleles, specifying 28 different region configurations. The DRA alleles can be divided into two distinct lineages. One lineage is polymorphic, but the majority of the amino acid replacements map to the leader peptide. The second lineage is at best oligomorphic, and segregates with one specific Mafa-DRB allele. The number of Mafa-DRB genes ranges from two to five per haplotype. Due to the presence of pseudogenes, however, each haplotype encodes only one to three bona fide DRB transcripts. Depending on the region configuration in which the Mafa-DRB gene is embedded, identical alleles may display differential transcription levels. Region configurations appear to have been generated by recombination-like events. When genes or gene segments are relocated, it seems plausible that they may be placed in the context of distinct transcription control elements. As such, DRB region-related transcription level differences may add an extra layer of polymorphism to this section of the adaptive immune system
Expression of MHC class II in T cells is associated with increased HIV-1 expression
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75144/1/j.1365-2249.2000.01290.x.pd
Vaccination against Murine Toxoplasmosis Using Recombinant Toxoplasma gondii SAG3 Antigen Alone or in Combination with Quil A
Major Histocompatibility Complex (MHC) Markers in Conservation Biology
Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity
Transcriptomic Analysis of Toxoplasma Development Reveals Many Novel Functions and Structures Specific to Sporozoites and Oocysts
Sexual reproduction of Toxoplasma gondii occurs exclusively within enterocytes of the definitive felid host. The resulting immature oocysts are excreted into the environment during defecation, where in the days following, they undergo a complex developmental process. Within each oocyst, this culminates in the generation of two sporocysts, each containing 4 sporozoites. A single felid host is capable of shedding millions of oocysts, which can survive for years in the environment, are resistant to most methods of microbial inactivation during water-treatment and are capable of producing infection in warm-blooded hosts at doses as low as 1–10 ingested oocysts. Despite its extremely interesting developmental biology and crucial role in initiating an infection, almost nothing is known about the oocyst stage beyond morphological descriptions. Here, we present a complete transcriptomic analysis of the oocyst from beginning to end of its development. In addition, and to identify genes whose expression is unique to this developmental form, we compared the transcriptomes of developing oocysts with those of in vitro-derived tachyzoites and in vivo-derived bradyzoites. Our results reveal many genes whose expression is specifically up- or down-regulated in different developmental stages, including many genes that are likely critical to oocyst development, wall formation, resistance to environmental destruction and sporozoite infectivity. Of special note is the up-regulation of genes that appear “off” in tachyzoites and bradyzoites but that encode homologues of proteins known to serve key functions in those asexual stages, including a novel pairing of sporozoite-specific paralogues of AMA1 and RON2, two proteins that have recently been shown to form a crucial bridge during tachyzoite invasion of host cells. This work provides the first in-depth insight into the development and functioning of one of the most important but least studied stages in the Toxoplasma life cycle
Biochemical and molecular characterization of rhesus monkey major histocompatibility complex class II DR
HIV-1 envelope-specific CD4+ T helper cells from simian/human immunodeficiency virus-infected rhesus monkeys recognize epitopes restricted by MHC class II DRB1*0406 and DRB*W201 molecules.
Abstract
The HIV-1 envelope (Env)-specific Th cell response of rhesus monkeys infected with nonpathogenic chimeric simian/human immunodeficiency viruses (SHIV) was assessed at a molecular level by establishing rgp120-specific CD4+ T cell lines. Epitopes recognized by these MHC class II-restricted Th cells were identified within the second (C2), third (C3), and fifth (C5) conserved regions of HIV-1 gp120. The epitope located in C2 was found to be restricted by the rhesus monkey (Macaca mulatta) leukocyte Ag Mamu-DRB1*0406, and the Th cell epitope in C5 was found to be restricted by Mamu-DRB*W201. The restriction element requirements of the C2 and C5 epitope-specific CD4+ Th cells appear to be rather stringent, because these peptide epitopes were not recognized in the presence of other Mamu-DR expressing cell lines. The ability to analyze HIV-1 Env-specific CD4+ T cell responses in SHIV-infected monkeys will enhance the utility of this model for studying AIDS pathogenesis and for assessing novel HIV-1 vaccine strategies.</jats:p
- …
