4,348 research outputs found

    Variance Reduction Result for a Projected Adaptive Biasing Force Method

    Full text link
    This paper is committed to investigate an extension of the classical adaptive biasing force method, which is used to compute the free energy related to the Boltzmann-Gibbs measure and a reaction coordinate function. The issue of this technique is that the approximated gradient of the free energy, called biasing force, is not a gradient. The commitment to this field is to project the estimated biasing force on a gradient using the Helmholtz decomposition. The variance of the biasing force is reduced using this technique, which makes the algorithm more efficient than the standard ABF method. We prove exponential convergence to equilibrium of the estimated free energy, with a precise rate of convergence in function of Logarithmic Sobolev inequality constants

    Long-time convergence of an adaptive biasing force method: Variance reduction by Helmholtz projection

    Get PDF
    In this paper, we propose an improvement of the adaptive biasing force (ABF) method, by projecting the estimated mean force onto a gradient. The associated stochastic process satisfies a non linear stochastic differential equation. Using entropy techniques, we prove exponential convergence to the stationary state of this stochastic process. We finally show on some numerical examples that the variance of the approximated mean force is reduced using this technique, which makes the algorithm more efficient than the standard ABF method.Comment: 33 pages, 20 figure

    Enhanced sampling of multidimensional free-energy landscapes using adaptive biasing forces

    Full text link
    We propose an adaptive biasing algorithm aimed at enhancing the sampling of multimodal measures by Langevin dynamics. The underlying idea consists in generalizing the standard adaptive biasing force method commonly used in conjunction with molecular dynamics to handle in a more effective fashion multidimensional reaction coordinates. The proposed approach is anticipated to be particularly useful for reaction coordinates, the components of which are weakly coupled, as illuminated in a mathematical analysis of the long-time convergence of the algorithm. The strength as well as the intrinsic limitation of the method are discussed and illustrated in two realistic test cases

    Two mathematical tools to analyze metastable stochastic processes

    Full text link
    We present how entropy estimates and logarithmic Sobolev inequalities on the one hand, and the notion of quasi-stationary distribution on the other hand, are useful tools to analyze metastable overdamped Langevin dynamics, in particular to quantify the degree of metastability. We discuss the interest of these approaches to estimate the efficiency of some classical algorithms used to speed up the sampling, and to evaluate the error introduced by some coarse-graining procedures. This paper is a summary of a plenary talk given by the author at the ENUMATH 2011 conference

    Accelerated dynamics: Mathematical foundations and algorithmic improvements

    Full text link
    We present a review of recent works on the mathematical analysis of algorithms which have been proposed by A.F. Voter and co-workers in the late nineties in order to efficiently generate long trajectories of metastable processes. These techniques have been successfully applied in many contexts, in particular in the field of materials science. The mathematical analysis we propose relies on the notion of quasi stationary distribution

    Free-energy-dissipative schemes for the Oldroyd-B model

    Get PDF
    In this article, we analyze the stability of various numerical schemes for differential models of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman, which have been reported to be numerically more stable than discretizations of the usual formulation in some benchmark problems. Our analysis gives some tracks to understand these numerical observations

    Greedy algorithms for high-dimensional eigenvalue problems

    Full text link
    In this article, we present two new greedy algorithms for the computation of the lowest eigenvalue (and an associated eigenvector) of a high-dimensional eigenvalue problem, and prove some convergence results for these algorithms and their orthogonalized versions. The performance of our algorithms is illustrated on numerical test cases (including the computation of the buckling modes of a microstructured plate), and compared with that of another greedy algorithm for eigenvalue problems introduced by Ammar and Chinesta.Comment: 33 pages, 5 figure
    corecore