1,515 research outputs found

    Grafting Hypersequents onto Nested Sequents

    Full text link
    We introduce a new Gentzen-style framework of grafted hypersequents that combines the formalism of nested sequents with that of hypersequents. To illustrate the potential of the framework, we present novel calculi for the modal logics K5\mathsf{K5} and KD5\mathsf{KD5}, as well as for extensions of the modal logics K\mathsf{K} and KD\mathsf{KD} with the axiom for shift reflexivity. The latter of these extensions is also known as SDL+\mathsf{SDL}^+ in the context of deontic logic. All our calculi enjoy syntactic cut elimination and can be used in backwards proof search procedures of optimal complexity. The tableaufication of the calculi for K5\mathsf{K5} and KD5\mathsf{KD5} yields simplified prefixed tableau calculi for these logic reminiscent of the simplified tableau system for S5\mathsf{S5}, which might be of independent interest

    Continuous Multiclass Labeling Approaches and Algorithms

    Get PDF
    We study convex relaxations of the image labeling problem on a continuous domain with regularizers based on metric interaction potentials. The generic framework ensures existence of minimizers and covers a wide range of relaxations of the originally combinatorial problem. We focus on two specific relaxations that differ in flexibility and simplicity -- one can be used to tightly relax any metric interaction potential, while the other one only covers Euclidean metrics but requires less computational effort. For solving the nonsmooth discretized problem, we propose a globally convergent Douglas-Rachford scheme, and show that a sequence of dual iterates can be recovered in order to provide a posteriori optimality bounds. In a quantitative comparison to two other first-order methods, the approach shows competitive performance on synthetical and real-world images. By combining the method with an improved binarization technique for nonstandard potentials, we were able to routinely recover discrete solutions within 1%--5% of the global optimum for the combinatorial image labeling problem

    Image reconstruction with imperfect forward models and applications in deblurring

    Full text link
    We present and analyse an approach to image reconstruction problems with imperfect forward models based on partially ordered spaces - Banach lattices. In this approach, errors in the data and in the forward models are described using order intervals. The method can be characterised as the lattice analogue of the residual method, where the feasible set is defined by linear inequality constraints. The study of this feasible set is the main contribution of this paper. Convexity of this feasible set is examined in several settings and modifications for introducing additional information about the forward operator are considered. Numerical examples demonstrate the performance of the method in deblurring with errors in the blurring kernel

    Sublabel-Accurate Relaxation of Nonconvex Energies

    Full text link
    We propose a novel spatially continuous framework for convex relaxations based on functional lifting. Our method can be interpreted as a sublabel-accurate solution to multilabel problems. We show that previously proposed functional lifting methods optimize an energy which is linear between two labels and hence require (often infinitely) many labels for a faithful approximation. In contrast, the proposed formulation is based on a piecewise convex approximation and therefore needs far fewer labels. In comparison to recent MRF-based approaches, our method is formulated in a spatially continuous setting and shows less grid bias. Moreover, in a local sense, our formulation is the tightest possible convex relaxation. It is easy to implement and allows an efficient primal-dual optimization on GPUs. We show the effectiveness of our approach on several computer vision problems

    Imaging with Kantorovich-Rubinstein discrepancy

    Full text link
    We propose the use of the Kantorovich-Rubinstein norm from optimal transport in imaging problems. In particular, we discuss a variational regularisation model endowed with a Kantorovich-Rubinstein discrepancy term and total variation regularization in the context of image denoising and cartoon-texture decomposition. We point out connections of this approach to several other recently proposed methods such as total generalized variation and norms capturing oscillating patterns. We also show that the respective optimization problem can be turned into a convex-concave saddle point problem with simple constraints and hence, can be solved by standard tools. Numerical examples exhibit interesting features and favourable performance for denoising and cartoon-texture decomposition

    Convex Multi-Class Image Labeling by Simplex-Constrained Total Variation

    Get PDF
    Multi-class labeling is one of the core problems in image analysis. We show how this combinatorial problem can be approximately solved using tools from convex optimization. We suggest a novel functional based on a multidimensional total variation formulation, allowing for a broad range of data terms. Optimization is carried out in the operator splitting framework using Douglas-Rachford Splitting. In this connection, we compare two methods to solve the Rudin-Osher-Fatemi type subproblems and demonstrate the performance of our approach on single- and multichannel images
    corecore