2,291 research outputs found
Current-driven filamentation upstream of magnetized relativistic collisionless shocks
The physics of instabilities in the precursor of relativistic collisionless
shocks is of broad importance in high energy astrophysics, because these
instabilities build up the shock, control the particle acceleration process and
generate the magnetic fields in which the accelerated particles radiate. Two
crucial parameters control the micro-physics of these shocks: the magnetization
of the ambient medium and the Lorentz factor of the shock front; as of today,
much of this parameter space remains to be explored. In the present paper, we
report on a new instability upstream of electron-positron relativistic shocks
and we argue that this instability shapes the micro-physics at moderate
magnetization levels and/or large Lorentz factors. This instability is seeded
by the electric current carried by the accelerated particles in the shock
precursor as they gyrate around the background magnetic field. The compensation
current induced in the background plasma leads to an unstable configuration,
with the appearance of charge neutral filaments carrying a current of the same
polarity, oriented along the perpendicular current. This ``current-driven
filamentation'' instability grows faster than any other instability studied so
far upstream of relativistic shocks, with a growth rate comparable to the
plasma frequency. Furthermore, the compensation of the current is associated
with a slow-down of the ambient plasma as it penetrates the shock precursor (as
viewed in the shock rest frame). This slow-down of the plasma implies that the
``current driven filamentation'' instability can grow for any value of the
shock Lorentz factor, provided the magnetization \sigma <~ 10^{-2}. We argue
that this instability explains the results of recent particle-in-cell
simulations in the mildly magnetized regime.Comment: 14 pages, 8 figures; to appear in MNRA
A critical approach to the concept of a polar, low-altitude LARES satellite
According to very recent developments of the LARES mission, which would be
devoted to the measurement of the general relativistic Lense--Thirring effect
in the gravitational field of the Earth with Satellite Laser Ranging, it seems
that the LARES satellite might be finally launched in a polar, low--altitude
orbit by means of a relatively low--cost rocket. The observable would be the
node only. In this letter we critically analyze this scenario.Comment: LaTex2e, 11 pages, 4 figures, 1 table. Accepted for publication in
Classical and Quantum Gravit
Is it possible to test directly General Relativity in the gravitational field of the Moon?
In this paper the possibility of measuring some general relativistic effects
in the gravitational field of the Moon via selenodetic missions, with
particular emphasis to the future Japanese SELENE mission, is investigated. For
a typical selenodetic orbital configuration the post-Newtonian Lense-Thirring
gravitomagnetic and the Einstein's gravitoelectric effects on the satellites
orbits are calculated and compared to the present-day orbit accuracy of lunar
missions. It turns out that for SELENE's Main Orbiter, at present, the
gravitoelectric periselenium shift, which is the largest general relativistic
effect, is 1 or 2 orders of magnitude smaller than the experimental
sensitivity. The systematic error induced by the mismodelled classical
periselenium precession due to the first even zonal harmonic J2 of the Moon's
non-spherical gravitational potential is 3 orders of magnitude larger than the
general relativistic gravitoelectric precession. The estimates of this work
could be used for future lunar missions having as their goals relativistic
measurements as well.Comment: Latex2e, 7 pages, no figures, ets2000.cls and art12.sty used. Major
rewriting in introduction. References adde
Measuring the relativistic perigee advance with Satellite Laser Ranging
One of the most famous classical tests of General Relativity is the
gravitoelectric secular advance of the pericenter of a test body in the
gravitational field of a central mass. In this paper we explore the possibility
of performing a measurement of the gravitoelectric pericenter advance in the
gravitational field of the Earth by analyzing the laser-ranged data to some
existing, or proposed, laser-ranged geodetic satellites. At the present level
of knowledge of various error sources, the relative precision obtainable with
the data from LAGEOS and LAGEOS II, suitably combined, is of the order of
. Nevertheless, these accuracies could sensibly be improved in the
near future when the new data on the terrestrial gravitational field from the
CHAMP and GRACE missions will be available. The use of the perigee of LARES
(LAser RElativity Satellite), in the context of a suitable combination of
orbital residuals including also LAGEOS II, should further raise the precision
of the measurement. As a secondary outcome of the proposed experiment, with the
so obtained value of \ppn and with \et=4\beta-\gamma-3 from Lunar Laser
Ranging it could be possible to obtain an estimate of the PPN parameters
and at the level.Comment: LaTex2e, 14 pages, no figures, 2 tables. To appear in Classical and
Quantum Gravit
LAGEOS-type Satellites in Critical Supplementary Orbit Configuration and the Lense-Thirring Effect Detection
In this paper we analyze quantitatively the concept of LAGEOS--type
satellites in critical supplementary orbit configuration (CSOC) which has
proven capable of yielding various observables for many tests of General
Relativity in the terrestrial gravitational field, with particular emphasis on
the measurement of the Lense--Thirring effect.Comment: LaTex2e, 20 pages, 7 Tables, 6 Figures. Changes in Introduction,
Conclusions, reference added, accepted for publication in Classical and
Quantum Gravit
A time frequency analysis of wave packet fractional revivals
We show that the time frequency analysis of the autocorrelation function is,
in many ways, a more appropriate tool to resolve fractional revivals of a wave
packet than the usual time domain analysis. This advantage is crucial in
reconstructing the initial state of the wave packet when its coherent structure
is short-lived and decays before it is fully revived. Our calculations are
based on the model example of fractional revivals in a Rydberg wave packet of
circular states. We end by providing an analytical investigation which fully
agrees with our numerical observations on the utility of time-frequency
analysis in the study of wave packet fractional revivals.Comment: 9 pages, 4 figure
INTEGRAL observations of TeV plerions
Amongst the sources seen in very high gamma-rays several are associated with
Pulsar Wind Nebulae (``TeV plerions''). The study of hard X-ray/soft gamma-ray
emission is providing an important insight into the energetic particle
population present in these objects. The unpulsed emission from pulsar/pulsar
wind nebula systems in the energy range accessible to the INTEGRAL satellite is
mainly synchrotron emission from energetic and fast cooling electrons close to
their acceleration site. Our analyses of public INTEGRAL data of known TeV
plerions detected by ground based Cherenkov telescopes indicate a deeper link
between these TeV plerions and INTEGRAL detected pulsar wind nebulae. The newly
discovered TeV plerion in the northern wing of the Kookaburra region
(G313.3+0.6 powered by the middle aged PSR J1420-6048) is found to have a
previously unknown INTEGRAL counterpart which is besides the Vela pulsar the
only middle aged pulsar detected with INTEGRAL. We do not find an INTEGRAL
counterpart of the TeV plerion associated with the X-ray PWN ``Rabbit''
G313.3+0.1 which is possibly powered by a young pulsar.Comment: 4 pages, 6 figures, proceedings of conference "The Multi-Messenger
Approach to High-Energy Gamma-ray Sources" Barcelona/Spain (2006
- …
