378 research outputs found

    Rotor Eddy-Current loss in permanent-magnet brushless AC machines

    Get PDF
    This paper analyzes rotor eddy-current loss in permanent-magnet brushless ac machines. It is shown that analytical or finite-element techniques published in literature for predicting rotor eddy-current loss using space harmonic based approaches may not yield correct results in each magnet segment when one magnet-pole is circumferentially segmented into more than two pieces. It is also shown that the eddy-current loss in each equally segmented piece may differ by a large margin, which implies that the temperature distribution in the magnets will be uneven and the risk of demagnetization has to be carefully assessed. The theoretical derivation is validated by time-stepped transient finite-element analysis

    Nutrient levels and trade-offs control diversity in a serial dilution ecosystem

    Full text link
    Microbial communities feature an immense diversity of species and this diversity is linked with outcomes ranging from ecosystem stability to medical prognoses. Yet the mechanisms underlying microbial diversity are under debate. While simple resource-competition models don't allow for coexistence of a large number of species, it was recently shown that metabolic trade-offs can allow unlimited diversity. Does this diversity persist with more realistic, intermittent nutrient supply? Here, we demonstrate theoretically that in serial dilution culture, metabolic trade-offs allow for high diversity. When a small amount of nutrient is supplied to each batch, the serial dilution dynamics mimic a chemostat-like steady state. If more nutrient is supplied, diversity depends on the amount of nutrient supplied due to an "early-bird" effect. The interplay of this effect with different environmental factors and diversity-supporting mechanisms leads to a variety of relationships between nutrient supply and diversity, suggesting that real ecosystems may not obey a universal nutrient-diversity relationship.Comment: Appendix follows main tex

    Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi

    Get PDF
    Many studies have scrutinized the nutritional benefits of arbuscular mycorrhizal associations to their host plants, while the carbon (C) balance of the symbiosis has often been neglected. Here, we present quantification of both the C costs and the phosphorus (P) uptake benefits of mycorrhizal association between barrel medic (Medicago truncatula) and three arbuscular mycorrhizal fungal species, namely Glomus intraradices, Glomus claroideum, and Gigaspora margarita. Plant growth, P uptake and C allocation were assessed 7 weeks after sowing by comparing inoculated plants with their non-mycorrhizal counterparts, supplemented with different amounts of P. Isotope tracing (3)(3)P and (1)(3)C) was used to quantify both the mycorrhizal benefits and the costs, respectively. G. intraradices supported greatest plant P acquisition and incurred high C costs, which lead to similar plant growth benefits as inoculation with G. claroideum, which was less efficient in supporting plant P acquisition, but also required less C. G. margarita imposed large C requirement on the host plant and provided negligible P uptake benefits. However, it did not significantly reduce plant growth due to sink strength stimulation of plant photosynthesis. A simple experimental system such as the one established here should allow quantification of mycorrhizal costs and benefits routinely on a large number of experimental units. This is necessary for rapid progress in assessment of C fluxes between the plants and different mycorrhizal fungi or fungal communities, and for understanding the dynamics between mutualism and parasitism in mycorrhizal symbioses

    Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi

    Get PDF
    Many studies have scrutinized the nutritional benefits of arbuscular mycorrhizal associations to their host plants, while the carbon (C) balance of the symbiosis has often been neglected. Here, we present quantification of both the C costs and the phosphorus (P) uptake benefits of mycorrhizal association between barrel medic (Medicago truncatula) and three arbuscular mycorrhizal fungal species, namely Glomus intraradices, Glomus claroideum, and Gigaspora margarita. Plant growth, P uptake and C allocation were assessed 7weeks after sowing by comparing inoculated plants with their non-mycorrhizal counterparts, supplemented with different amounts of P. Isotope tracing (33P and 13C) was used to quantify both the mycorrhizal benefits and the costs, respectively. G. intraradices supported greatest plant P acquisition and incurred high C costs, which lead to similar plant growth benefits as inoculation with G. claroideum, which was less efficient in supporting plant P acquisition, but also required less C. G. margarita imposed large C requirement on the host plant and provided negligible P uptake benefits. However, it did not significantly reduce plant growth due to sink strength stimulation of plant photosynthesis. A simple experimental system such as the one established here should allow quantification of mycorrhizal costs and benefits routinely on a large number of experimental units. This is necessary for rapid progress in assessment of C fluxes between the plants and different mycorrhizal fungi or fungal communities, and for understanding the dynamics between mutualism and parasitism in mycorrhizal symbiose

    Endocytic reawakening of motility in jammed epithelia.

    Get PDF
    Dynamics of epithelial monolayers has recently been interpreted in terms of a jamming or rigidity transition. How cells control such phase transitions is, however, unknown. Here we show that RAB5A, a key endocytic protein, is sufficient to induce large-scale, coordinated motility over tens of cells, and ballistic motion in otherwise kinetically arrested monolayers. This is linked to increased traction forces and to the extension of cell protrusions, which align with local velocity. Molecularly, impairing endocytosis, macropinocytosis or increasing fluid efflux abrogates RAB5A-induced collective motility. A simple model based on mechanical junctional tension and an active cell reorientation mechanism for the velocity of self-propelled cells identifies regimes of monolayer dynamics that explain endocytic reawakening of locomotion in terms of a combination of large-scale directed migration and local unjamming. These changes in multicellular dynamics enable collectives to migrate under physical constraints and may be exploited by tumours for interstitial dissemination

    Der Einfluss begrünter Fassaden auf Emotionen invirtuellen Stadträumen

    Get PDF
    Die stetig wachsende Gesamtbevölkerung wirkt sich massiv auf die Urbanisierung aus. Grundsätzlich wird ein verdichtetes Bauen in urbanen Kernzonen gefördert, um der Zersiedelung entgegenzuwirken. Allerdings bringt die Verdichtung in Städten einige Herausforderungen mit sich – darunter vor allem schwindende Grünräume. Solche Räume in Städten leisten nicht nur einen wichtigen Beitrag zum Stadtklima, sondern gelten als stressmindernd und wirken sich somit positiv auf die psychische Gesundheit aus. Folglich ist die Erhaltung von Grünräumen in Städten von zentraler Bedeutung. Eine Möglichkeit, vermehrt Grünräume trotz limitierter horizontaler Fläche in Städte zu integrieren, bietet die vertikale Fassadenbegrünung. Die vorliegende Masterarbeit untersucht den Einfluss begrünter Fassaden auf die Emotionen anhand eines Experiments in Virtual Reality. Der Einfluss wird durch eine Umfrage sowie Messwerte der Hautleitfähigkeit als Stressindikator ermittelt. Die Resultate der Umfrage zeigen, dass sich Personen in Stadträumen mit Fassadenbegrünung glücklicher sowie entspannter fühlen. Bezogen auf die Hautleitfähigkeit weisen Personen in begrünten Stadträumen eine signifikant geringere Erregung auf. Die Messwerte der Umfrage korrelieren dabei mit den objektiv ermittelten Daten der Hautleitfähigkeit. Folglich deuten die erzielten Resultate darauf hin, dass begrünte Fassaden zu einer Reduktion der Erregung und Stressempfindung sowie einer Zunahme an Emotionen wie Freude führen. Weitere Forschungen können sich an den erzielten Resultaten orientieren und beispielsweise die Art oder Menge der Fassadenbegrünung variieren oder das Experiment unter realen Bedingungen durchführen

    The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae

    Get PDF
    [Background] Low-temperature growth and fermentation of wine yeast can enhance wine aroma and make them highly desirable traits for the industry. Elucidating response to cold in Saccharomyces cerevisiae is, therefore, of paramount importance to select or genetically improve new wine strains. As most enological traits of industrial importance in yeasts, adaptation to low temperature is a polygenic trait regulated by many interacting loci.[Results] In order to unravel the genetic determinants of low-temperature fermentation, we mapped quantitative trait loci (QTLs) by bulk segregant analyses in the F13 offspring of two Saccharomyces cerevisiae industrial strains with divergent performance at low temperature. We detected four genomic regions involved in the adaptation at low temperature, three of them located in the subtelomeric regions (chromosomes XIII, XV and XVI) and one in the chromosome XIV. The QTL analysis revealed that subtelomeric regions play a key role in defining individual variation, which emphasizes the importance of these regions’ adaptive nature.[Conclusions] The reciprocal hemizygosity analysis (RHA), run to validate the genes involved in low-temperature fermentation, showed that genetic variation in mitochondrial proteins, maintenance of correct asymmetry and distribution of phospholipid in the plasma membrane are key determinants of low-temperature adaptation.This work has been financially supported from the Spanish Government through MINECO and FEDER funds (AGL2013-47300-C3-3-R and PCIN-2015-143 grants) and from Generalitat Valenciana through PROMETEOII/2014/042 grant, awarded to JMG. This study has been carried out in the context of the European Project ERA-IB “YeastTempTation” EGR thanks the Spanish government for an FPI grant BES-2011-044498 and MM also thanks the Generalitat Valenciana for a VALi+d ACIF/2015/194 grant. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    Full-Spectrum Flexible Color Printing at the Diffraction Limit

    Full text link
    Color printing at the diffraction limit has been recently explored by fabricating nanoscale plasmonic structures with electron beam lithography. However, only a limited color range and constant intensity throughout the structure have been demonstrated. Here we show an alternative, facile approach relying on the direct, open-atmosphere electrohydrodynamic rapid nanodrip printing of controlled amounts of red, green and blue (RGB) quantum dots at a resolution of 250 nm. The narrow emission spectrum of the dots allows the coverage of a very broad color space, exceeding standard RGB (sRGB) of modern display devices. We print color gradients of variable intensity, which to date could not be achieved with diffraction-limited resolution. Showcasing the capabilities of the technology, we present a photo-realistic printed image of a colorful parrot with a pixel size of 250 nm

    Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits.

    Get PDF
    Interest in the use of engineered nanomaterials (ENMs) as either nanomedicines or dental materials/devices in clinical dentistry is growing. This review aims to detail the ultrafine structure, chemical composition, and reactivity of dental tissues in the context of interactions with ENMs, including the saliva, pellicle layer, and oral biofilm; then describes the applications of ENMs in dentistry in context with beneficial clinical outcomes versus potential risks. The flow rate and quality of saliva are likely to influence the behavior of ENMs in the oral cavity, but how the protein corona formed on the ENMs will alter bioavailability, or interact with the structure and proteins of the pellicle layer, as well as microbes in the biofilm, remains unclear. The tooth enamel is a dense crystalline structure that is likely to act as a barrier to ENM penetration, but underlying dentinal tubules are not. Consequently, ENMs may be used to strengthen dentine or regenerate pulp tissue. ENMs have dental applications as antibacterials for infection control, as nanofillers to improve the mechanical and bioactive properties of restoration materials, and as novel coatings on dental implants. Dentifrices and some related personal care products are already available for oral health applications. Overall, the clinical benefits generally outweigh the hazards of using ENMs in the oral cavity, and the latter should not prevent the responsible innovation of nanotechnology in dentistry. However, the clinical safety regulations for dental materials have not been specifically updated for ENMs, and some guidance on occupational health for practitioners is also needed. Knowledge gaps for future research include the formation of protein corona in the oral cavity, ENM diffusion through clinically relevant biofilms, and mechanistic investigations on how ENMs strengthen the tooth structure
    corecore