2,507 research outputs found
A photometric study of the hot exoplanet WASP-19b
Context: When the planet transits its host star, it is possible to measure
the planetary radius and (with radial velocity data) the planet mass. For the
study of planetary atmospheres, it is essential to obtain transit and
occultation measurements at multiple wavelengths.
Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving
accurate and precise planetary parameters from a dedicated observing campaign
of transits and occultations.
Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn,
IC, z'-Gunn and I+z' filters and 10 occultation lightcurves in z'-Gunn using
EulerCam on the Euler-Swiss telescope and TRAPPIST. We have also obtained one
lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring
an occultation at 1.19 micron. We have performed a global MCMC analysis of all
new data together with some archive data in order to refine the planetary
parameters and measure the occultation depths in z'-band and at 1.19 micron.
Results: We measure a planetary radius of R_p = 1.376 (+/-0.046) R_j, a
planetary mass of M_p = 1.165 (+/-0.068) M_j, and find a very low eccentricity
of e = 0.0077 (+/-0.0068), compatible with a circular orbit. We have detected
the z'-band occultation at 3 sigma significance and measure it to be dF_z'= 352
(+/-116) ppm, more than a factor of 2 smaller than previously published. The
occultation at 1.19 micron is only marginally constrained at dF_1190 = 1711
(+/-745) ppm.
Conclusions: We have shown that the detection of occultations in the visible
is within reach even for 1m class telescopes if a considerable number of
individual events are observed. Our results suggest an oxygen-dominated
atmosphere of WASP-19b, making the planet an interesting test case for
oxygen-rich planets without temperature inversion.Comment: Published in Astronomy & Astrophysics. 11 pages, 11 figures, 4 table
Signs of strong Na and K absorption in the transmission spectrum of WASP-103b
Context: Transmission spectroscopy has become a prominent tool for
characterizing the atmospheric properties on close-in transiting planets.
Recent observations have revealed a remarkable diversity in exoplanet spectra,
which show absorption signatures of Na, K and , in some cases
partially or fully attenuated by atmospheric aerosols. Aerosols (clouds and
hazes) themselves have been detected in the transmission spectra of several
planets thanks to wavelength-dependent slopes caused by the particles'
scattering properties. Aims: We present an optical 550 - 960 nm transmission
spectrum of the extremely irradiated hot Jupiter WASP-103b, one of the hottest
(2500 K) and most massive (1.5 ) planets yet to be studied with this
technique. WASP-103b orbits its star at a separation of less than 1.2 times the
Roche limit and is predicted to be strongly tidally distorted. Methods: We have
used Gemini/GMOS to obtain multi-object spectroscopy hroughout three transits
of WASP-103b. We used relative spectrophotometry and bin sizes between 20 and 2
nm to infer the planet's transmission spectrum. Results: We find that WASP-103b
shows increased absorption in the cores of the alkali (Na, K) line features. We
do not confirm the presence of any strong scattering slope as previously
suggested, pointing towards a clear atmosphere for the highly irradiated,
massive exoplanet WASP-103b. We constrain the upper boundary of any potential
cloud deck to reside at pressure levels above 0.01 bar. This finding is in line
with previous studies on cloud occurrence on exoplanets which find that clouds
dominate the transmission spectra of cool, low surface gravity planets while
hot, high surface gravity planets are either cloud-free, or possess clouds
located below the altitudes probed by transmission spectra.Comment: Accepted for publication in A&
The Role of N2 as a Geo-Biosignature for the Detection and Characterization of Earth-like Habitats
Since the Archean, N2 has been a major atmospheric constituent in Earth's
atmosphere. Nitrogen is an essential element in the building blocks of life,
therefore the geobiological nitrogen cycle is a fundamental factor in the long
term evolution of both Earth and Earth-like exoplanets. We discuss the
development of the Earth's N2 atmosphere since the planet's formation and its
relation with the geobiological cycle. Then we suggest atmospheric evolution
scenarios and their possible interaction with life forms: firstly, for a
stagnant-lid anoxic world, secondly for a tectonically active anoxic world, and
thirdly for an oxidized tectonically active world. Furthermore, we discuss a
possible demise of present Earth's biosphere and its effects on the atmosphere.
Since life forms are the most efficient means for recycling deposited nitrogen
back into the atmosphere nowadays, they sustain its surface partial pressure at
high levels. Also, the simultaneous presence of significant N2 and O2 is
chemically incompatible in an atmosphere over geological timescales. Thus, we
argue that an N2-dominated atmosphere in combination with O2 on Earth-like
planets within circumstellar habitable zones can be considered as a
geo-biosignature. Terrestrial planets with such atmospheres will have an
operating tectonic regime connected with an aerobe biosphere, whereas other
scenarios in most cases end up with a CO2-dominated atmosphere. We conclude
with implications for the search for life on Earth-like exoplanets inside the
habitable zones of M to K-stars
New technologies to reduce pediatric radiation doses
X-ray dose reduction in pediatrics is particularly important because babies and children are very sensitive to radiation exposure. We present new developments to further decrease pediatric patient dose. With the help of an advanced exposure control, a constant image quality can be maintained for all patient sizes, leading to dose savings for babies and children of up to 30%. Because objects of interest are quite small and the speed of motion is high in pediatric patients, short pulse widths down to 4 ms are important to reduce motion blurring artifacts. Further, a new noise-reduction algorithm is presented that detects and processes signal and noise in different frequency bands, generating smooth images without contrast loss. Finally, we introduce a super-resolution technique: two or more medical images, which are shifted against each other in a subpixel region, are combined to resolve structures smaller than the size of a single pixel. Advanced exposure control, short exposure times, noise reduction and super-resolution provide improved image quality, which can also be invested to save radiation exposure. All in all, the tools presented here offer a large potential to minimize the deterministic and stochastic risks of radiation exposure
Young planets under extreme UV irradiation. I. Upper atmosphere modelling of the young exoplanet K2-33b
The K2-33 planetary system hosts one transiting ~5 R_E planet orbiting the
young M-type host star. The planet's mass is still unknown, with an estimated
upper limit of 5.4 M_J. The extreme youth of the system (<20 Myr) gives the
unprecedented opportunity to study the earliest phases of planetary evolution,
at a stage when the planet is exposed to an extremely high level of high-energy
radiation emitted by the host star. We perform a series of 1D hydrodynamic
simulations of the planet's upper atmosphere considering a range of possible
planetary masses, from 2 to 40 M_E, and equilibrium temperatures, from 850 to
1300 K, to account for internal heating as a result of contraction. We obtain
temperature profiles mostly controlled by the planet's mass, while the
equilibrium temperature has a secondary effect. For planetary masses below 7-10
M_E, the atmosphere is subject to extremely high escape rates, driven by the
planet's weak gravity and high thermal energy, which increase with decreasing
mass and/or increasing temperature. For higher masses, the escape is instead
driven by the absorption of the high-energy stellar radiation. A rough
comparison of the timescales for complete atmospheric escape and age of the
system indicates that the planet is more massive than 10 M_E.Comment: 11 pages, 7 figure
Ground-based photometry of the 21-day Neptune HD106315c
Space-based transit surveys such as K2 and TESS allow the detection of small
transiting planets with orbital periods beyond 10 days. Few of these warm
Neptunes are currently known around stars bright enough to allow for detailed
follow-up observations dedicated to their atmospheric characterization. The
21-day period and 3.95 planet HD106315c has been discovered based on
the observation of two of its transits by K2. We have observed HD106315 using
the 1.2m Euler telescope equipped with the EulerCam camera on two instances to
confirm the transit using broad band photometry and refine the planetary
period. Based on two observed transits of HD106315c, we detect its 1 mmag
transit and obtain a precise measurement of the planetary ephemerids, which are
critical for planning further follow-up observations. We have used the attained
precision together with the predicted yield from the TESS mission to evaluate
the potential for ground-based confirmation of Neptune-sized planets found by
TESS. We find that 1-meter-class telescopes on the ground equipped with precise
photometers could substantially contribute to the follow-up of 162 TESS
candidates orbiting stars with magnitudes of . Out of these, 74
planets orbit stars with and 12 planets orbit , which
makes these candidates high-priority objects for atmospheric characterization
with high-end instrumentation.Comment: Published in A&A letters, 4 pages, 3 figure
- A tool for multiband light curve modeling of planetary transits and stellar spots
Several studies have shown that stellar activity features, such as occulted
and non-occulted starspots, can affect the measurement of transit parameters
biasing studies of transit timing variations and transmission spectra. We
present , which we designed to model multiband transit
light curves showing starspot anomalies, inferring both transit and spot
parameters. The code follows a pixellation approach to model the star with its
corresponding limb darkening, spots, and transiting planet on a two dimensional
Cartesian coordinate grid. We combine with an MCMC
framework to study and derive exoplanet transmission spectra, which provides
statistically robust values for the physical properties and uncertainties of a
transiting star-planet system. We validate 's performance
by analyzing eleven synthetic light curves of four different star-planet
systems and 20 transit light curves of the well-studied WASP-41b system. We
also investigate the impact of starspots on transit parameters and derive
wavelength dependent transit depth values for WASP-41b covering a range of
6200-9200 , indicating a flat transmission spectrum.Comment: 17 pages, 22 figures; accepted for publication in Astronomy &
Astrophysic
- …
