7,105 research outputs found
Robust Inference for Univariate Proportional Hazards Frailty Regression Models
We consider a class of semiparametric regression models which are
one-parameter extensions of the Cox [J. Roy. Statist. Soc. Ser. B 34 (1972)
187-220] model for right-censored univariate failure times. These models assume
that the hazard given the covariates and a random frailty unique to each
individual has the proportional hazards form multiplied by the frailty.
The frailty is assumed to have mean 1 within a known one-parameter family of
distributions. Inference is based on a nonparametric likelihood. The behavior
of the likelihood maximizer is studied under general conditions where the
fitted model may be misspecified. The joint estimator of the regression and
frailty parameters as well as the baseline hazard is shown to be uniformly
consistent for the pseudo-value maximizing the asymptotic limit of the
likelihood. Appropriately standardized, the estimator converges weakly to a
Gaussian process. When the model is correctly specified, the procedure is
semiparametric efficient, achieving the semiparametric information bound for
all parameter components. It is also proved that the bootstrap gives valid
inferences for all parameters, even under misspecification.
We demonstrate analytically the importance of the robust inference in several
examples. In a randomized clinical trial, a valid test of the treatment effect
is possible when other prognostic factors and the frailty distribution are both
misspecified. Under certain conditions on the covariates, the ratios of the
regression parameters are still identifiable. The practical utility of the
procedure is illustrated on a non-Hodgkin's lymphoma dataset.Comment: Published by the Institute of Mathematical Statistics
(http://www.imstat.org) in the Annals of Statistics
(http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000053
Limits of flexural wave absorption by open lossy resonators: reflection and transmission problems
The limits of flexural wave absorption by open lossy resonators are
analytically and numerically reported in this work for both the reflection and
transmission problems. An experimental validation for the reflection problem is
presented. The reflection and transmission of flexural waves in 1D resonant
thin beams are analyzed by means of the transfer matrix method. The hypotheses,
on which the analytical model relies, are validated by experimental results.
The open lossy resonator, consisting of a finite length beam thinner than the
main beam, presents both energy leakage due to the aperture of the resonators
to the main beam and inherent losses due to the viscoelastic damping. Wave
absorption is found to be limited by the balance between the energy leakage and
the inherent losses of the open lossy resonator. The perfect compensation of
these two elements is known as the critical coupling condition and can be
easily tuned by the geometry of the resonator. On the one hand, the scattering
in the reflection problem is represented by the reflection coefficient. A
single symmetry of the resonance is used to obtain the critical coupling
condition. Therefore the perfect absorption can be obtained in this case. On
the other hand, the transmission problem is represented by two eigenvalues of
the scattering matrix, representing the symmetric and anti-symmetric parts of
the full scattering problem. In the geometry analyzed in this work, only one
kind of symmetry can be critically coupled, and therefore, the maximal
absorption in the transmission problem is limited to 0.5. The results shown in
this work pave the way to the design of resonators for efficient flexural wave
absorption
Elastic instability in stratified core annular flow
We study experimentally the interfacial instability between a layer of dilute
polymer solution and water flowing in a thin capillary. The use of microfluidic
devices allows us to observe and quantify in great detail the features of the
flow. At low velocities, the flow takes the form of a straight jet, while at
high velocities, steady or advected wavy jets are produced. We demonstrate that
the transition between these flow regimes is purely elastic -- it is caused by
viscoelasticity of the polymer solution only. The linear stability analysis of
the flow in the short-wave approximation captures quantitatively the flow
diagram. Surprisingly, unstable flows are observed for strong velocities,
whereas convected flows are observed for low velocities. We demonstrate that
this instability can be used to measure rheological properties of dilute
polymer solutions that are difficult to assess otherwise.Comment: 4 pages, 4 figure
Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow
Experimental observations of droplet size sustained oscillations are reported
in a two-phase flow between a lamellar and a sponge phase. Under shear flow,
this system presents two different steady states made of monodisperse
multilamellar droplets, separated by a shear-thinning transition. At low and
high shear rates, the droplet size results from a balance between surface
tension and viscous stress whereas for intermediate shear rates, it becomes a
periodic function of time. A possible mechanism for such kind of oscillations
is discussed
Developing a methodology for carbon isotope analysis of lacustrine diatoms
Stable isotope analysis of sedimentary carbon in lakes can help reveal changes in terrestrial and aquatic carbon cycles. A method based on a single, photosynthetic organism, where host effects are minimised, should offer more precision than carbon isotope studies of bulk lake sediments. Here we report the development of a systematic method for use on fossil lacustrine diatom frustules, adapted from previous studies in marine environments. A step-wise cleaning experiment on diatomaceous lake sediments from Lake Challa, near Mount Kilimanjaro, was made to demonstrate the necessary treatment stages to remove external sedimentary carbon. Changes in soluble carbon compounds during these cleaning experiments were measured using gas chromatography/mass spectrometry (GC/MS). The mass spectrometry methods were refined to measure the small percentage of carbon in these samples and details of these methods are presented. Samples of cleaned diatoms containing <1% carbon yielded robust results. Carbon isotope analyses of diatom samples containing different species mixtures were performed and suggested that differences existed, although the effects lay within current experimental error and require further work. Unlike what was found in work on oxygen and silicon isotopes from diatom frustules, mineral contamination had no discernible impact on the diatom carbon isotope ratios from these sediments. The range of values found in the lakes investigated thus far can be interpreted with reference to the supply and nature of carbon from the catchment as well as to the demand generated from lake primary productivit
Displacement and Distance Measurement using the Change in Junction Voltage Across a Laser Diode Due to the Self-Mixing Effect
The conventional self-mixing sensing systems employ a detection scheme utilizing the photocurrent from an integrated photodiode. This work reports on an alternative way of implementing a Vertical-Cavity Surface-Emitting Laser (VCSEL) based self-mixing sensor using the laser junction voltage as the source of the self-mixing signal. We show that the same information can be obtained with only minor changes to the extraction circuitry leading to potential cost saving with reductions in component costs and complexity. The theoretical linkage between voltage and photocurrent within the self-mixing model is presented. Experiments using both photo current and voltage detection were carried out and the results obtained show good agreement with the theory. Similar error trends for both detection regimes were observed
Magnetodielectric effect in nickel nanosheet-Na-4 mica composites
Nickel nanosheets of thickness 0.6 nm were grown within the nanochannels of
Na-4 mica template. The specimens show magnetodielectric effect at room
temperature with a change of dielectric constant as a function of magnetic
field, the electric field frequency varying from 100 to 700 kHz. A decrease of
5% in the value of dielectric constant was observed up to a field of 1.2 Tesla.
This is explained by an inhomogeneous two-component composite model as
theoretically proposed recently. The present approach will open up synthesis of
various nanocomposites for sensor applications.Comment: 11 pages, 7 figure
Risks associated with endotoxins in feed additives produced by fermentation
Acknowledgements We thank Jordi Tarrés Call, who recorded the discussions and offered advice about procedures, and Nicole Reisinger and Gerd Schatzmayr, who provided valuable information about endotoxins in animal feeds. The Rowett Institute of Nutrition and Health is funded by the Rural and Environment Science and Analytical Services Division (RESAS) of the Scottish Government.Peer reviewedPublisher PD
- …
