35 research outputs found
Making context-sensitive points-to analysis with heap cloning practical for the real world
Context-sensitive pointer analysis algorithms with full “heap cloning ” are powerful but are widely considered to be too expensive to include in production compilers. This paper shows, for the first time, that a context-sensitive, field-sensitive algorithm with full heap cloning (by acyclic call paths) can indeed be both scalable and extremely fast in practice. Overall, the algorithm is able to analyze programs in the range of 100K-200K lines of C code in 1-3 seconds, takes less than 5 % of the time it takes for GCC to compile the code (which includes no whole-program analysis), and scales well across five orders of magnitude of code size. It is also able to analyze the Linux kernel (about 355K lines of code) in 3.1 seconds. The paper describes the major algorithmic and engineering design choices that are required to achieve these results, including (a) using flow-insensitive and unification-based analysis, whic
Parallel graph analytics
Data-centric abstractions and execution strategies are needed to exploit parallelism in large-scale graph analytics.</jats:p
