19 research outputs found

    Lithium and methylphenidate: opposite effects on perirenal brown fat Lítio e metilfenidato: efeitos opostos sobre a gordura perirrenal

    No full text
    OBJECTIVE: To evaluate the effects of the administration of lithium to adult rats on brown (perirenal) and white (inguinal) adipose tissues and to assess whether methylphenidate modulates lithium effects. METHODS: Twenty-five adult male Wistar rats were fed with either regular or lithium-containing chow for 30 days. Between days 15 to 30 of treatment, animals received daily intraperitoneal administrations of either methylphenidate or saline. RESULTS: Lithium significantly reduced perirenal fat, and this effect was minimized by the administration of methylphenidate. There were no significant differences between the groups in terms of the effects of lithium on inguinal fat. CONCLUSION: Our findings suggest that different effects on white and brown tissue distribution may be involved in lithium-induced weight gain.<br>OBJETIVO: Avaliar como a administração de lítio afeta o tecido adiposo marrom (perirrenal) e branco (inguinal) e se o metilfenidato modula os efeitos do lítio. MÉTODOS: Vinte e cinco ratos Wistar adultos machos foram alimentados com ração normal ou contendo lítio por 30 dias. Entre os dias 15 e 30 de tratamento, os animais receberam doses intraperitoneais diárias de metilfenidato ou solução salina. RESULTADOS: A administração de lítio reduziu significativamente a gordura perirrenal. Esse efeito foi reduzido com a administração de metilfenidato. Não houve diferenças significativas entre os grupos em relação à gordura inguinal. CONCLUSÃO: Os achados sugerem que efeitos diferenciados sobre os tecidos adiposos marrom e branco podem estar envolvidos no ganho de peso induzido pelo tratamento com lítio

    P2Y2 receptors and water transport in the kidney

    No full text
    The kidneys play a critical role in the maintenance of water homeostasis. This is achieved by the inherent architecture of the nephron along with the expression of various membrane transporters and channels that are responsible for the vectorial transport of salt and water. The collecting duct has become a focus of attention by virtue of its ability to transport water independent of solutes (free-water transport), and its apparent involvement in various water balance disorders. It was originally believed that the water transport capability of the collecting duct was solely under the influence of the circulating hormone, arginine vasopressin (AVP). However, during the past decade, locally produced autocrine and/or paracrine factors have emerged as potent modulators of transport of water by the collecting duct. Recently, much attention has been focused on the purinergic regulation of renal water transport. This review focuses on the role of the P2Y2 receptor, the predominant purinergic receptor expressed in the collecting duct, in the modulation of water transport in physiological and pathophysiological conditions, and its therapeutic potential as a drug target to treat water balance disorders in the clinic. Studies carried out by us and other investigators are unravelling potent interactions among AVP, prostanoid and purinergic systems in the medullary collecting duct, and the perturbations of these interactions in water balance disorders such as acquired nephrogenic diabetes insipidus. Future studies should address the potential therapeutic benefits of modulators of P2Y2 receptor signalling in water balance disorders, which are extremely prevalent in hospitalised patients irrespective of the underlying pathology

    A proposed model for economic evaluations of major depressive disorder

    No full text
    In countries like UK and Australia, the comparability of model-based analyses is an essential aspect of reimbursement decisions for new pharmaceuticals, medical services and technologies. Within disease areas, the use of models with alternative structures, type of modelling techniques and/or data sources for common parameters reduces the comparability of evaluations of alternative technologies for the same condition. The aim of this paper is to propose a decision analytic model to evaluate longterm costs and benefits of alternative management options in patients with depression. The structure of the proposed model is based on the natural history of depression and includes clinical events that are important from both clinical and economic perspectives. Considering its greater flexibility with respect to handling time, discrete event simulation (DES) is an appropriate simulation platform for modelling studies of depression. We argue that the proposed model can be used as a reference model in modelbased studies of depression improving the quality and comparability of studies.Hossein Haji Ali Afzali, Jonathan Karnon and Jodi Gra
    corecore