776 research outputs found

    MEASURING GRAVITOMAGNETIC EFFECTS BY MEANS OF RING LASERS

    Get PDF
    Light is a good probe for general relativistic effects. Exploiting the asymmetry of the propagation in the vicinity of a central rotating mass it is possible to use a ring laser in order to measure the frame dragging of the reference frames by the gravitational field of the Earth (Lense-Thirring effect). I shall present the G-GranSasso experiment whose objective is precisely to measure the Lense-Thirring and the de Sitter effects in a terrestrial laboratory. The experimental apparatus will be made of a set of at least three, differently oriented, ring lasers rigidly attached to a central "monument". The signal will be in the form of the beat frequency produced in the annular cavity of each laser by the rotational anisotropy. The laboratory will be located underground in the Laboratori Nazionali del Gran Sasso facility, in Italy. The required sensitivity is just one order of magnitude below the performance of the best existing instruments and the new design will attain i

    Satellite gravitational orbital perturbations and the gravitomagnetic clock effect

    Get PDF
    In order to detect the gravitomagnetic clock effect by means of two counter-orbiting satellites placed on identical equatorial and circular orbits around the Earth with radius 7000 km their radial and azimuthal positions must be known with an accuracy of delta r =10^{-1} mm and delta phi =10^{-2} mas per revolution. In this work we investigate if the radial and azimuthal perturbations induced by the dynamical and static parts of the Earth' s gravitational field meet this requirements. While the radial direction is affected only by harmonic perturbations with periods up to some tens of days, the azimuthal location is perturbed by a secular drift and very long period effects.It results that the present level of accuracy in the knowledge both of the Earth solid and ocean tides, and of the static part of the geopotential does not allow an easy detection of the gravitomagnetic clock effect, at least by using short arcs only.Comment: 18 pages, 4 figures. Submitted to Int. Journal of Mod. Phys.

    A Gravitomagnetic Effect on the Orbit of a Test Body due to the Earth's Variable Angular Momentum

    Full text link
    The well known general relativistic Lense-Thirring drag of the orbit of a test particle in the stationary field of a central slowly rotating body is generated, in the weak-field and slow-motion approximation of General Relativity, by a gravitomagnetic Lorentz-like acceleration in the equations of motion of the test particle. In it the gravitomagnetic field is due to the central body's angular momentum supposed to be constant. In the context of the gravitational analogue of the Larmor theorem, such acceleration looks like a Coriolis inertial term in an accelerated frame. In this paper the effect of the variation in time of the central body's angular momentum on the orbit of a test mass is considered. It can be shown that it is analogue to the inertial acceleration due to the time derivative of the angular velocity vector of an accelerated frame. The possibility of detecting such effect in the gravitational field of the Earth with LAGEOS-like satellites is investigated. It turns out that the orbital effects are far too small to be measured.Comment: LaTex2e, 1 table, no figures, 7 page

    Gravitomagnetic time delay and the Lense-Thirring effect in Brans-Dicke theory of gravity

    Full text link
    We discuss the gravitomagnetic time delay and the Lense-Thirring effect in the context of Brans-Dicke theory of gravity. We compare the theoretical results obtained with those predicted by general relativity. We show that within the accuracy of experiments designed to measure these effects both theories predict essentially the same result.Comment: 10 pages Typeset using REVTE

    Trajectory of test particle around a slowly rotating relativistic star emitting isotropic radiation

    Full text link
    We explored the motion of test particles near slowly rotating relativistic star having a uniform luminosity. In order to derive the test particle's equations of motion, we made use of the radiation stress-energy tensor first constructed by Miller and Lamb \cite{ML96}. From the particle's trajectory obtained through the numerical integration of the equations of motion, it is found that for sufficiently high luminosity, "suspension orbit" exists, where the test particle hovers around at uniform angular velocity in the same direction as the star's spin. Interestingly, it turned out that the radial position of the "suspension orbit" was determined by the luminosity and the angular momentum of the star alone and was independent of the initial positions and the specific angular momentum of the particle. Also found is that there exist not only the radiation drag but also "radiation counter-drag" which depends on the stellar radius and the angular momentum and it is this radiation counter-drag that makes the test particle in the "suspension orbit" to hover around at uniform angular velocity which is greater than that induced by the Lense-Thirring effect (i.e., general relativistic dragging of inertial frame).Comment: 23 pages, 7 figures, to appear in Phys. Rev. D

    Can Solar System observations tell us something about the cosmological constant?

    Full text link
    In this note we show that the latest determinations of the residual Mercury's perihelion advance, obtained by accounting for almost all known Newtonian and post-Newtonian orbital effects, yields only very broad constraints on the cosmological constant. Indeed, from \delta\dot\omega=-0.0036 + - 0.0050 arcseconds per century one gets -2 10^-34 km^-2 < Lambda < 4 10^-35 km^-2. The currently accepted value for Lambda, obtained from many independent cosmological and large-scale measurements, amounts to almost 10^-46 km^-2.Comment: Latex2e, 4 pages, 2 table, no figures, 11 references. Table 2 added, typos in the units of Lambda correcte

    Glaciation in Montana

    Get PDF
    Glacial deposits are increasingly entering into consideration in engineering projects, soil surveys, ground-water supply, sources for industrial materials, and other economic enterprises. In the field of en­gineering, glacial deposits if present must be consider­ed in connection with reservoir sites, dam or bridge abutments, road building, and other types of construction work

    On the backreaction of frame dragging

    Full text link
    The backreaction on black holes due to dragging heavy, rather than test, objects is discussed. As a case study, a regular black Saturn system where the central black hole has vanishing intrinsic angular momentum, J^{BH}=0, is considered. It is shown that there is a correlation between the sign of two response functions. One is interpreted as a moment of inertia of the black ring in the black Saturn system. The other measures the variation of the black ring horizon angular velocity with the central black hole mass, for fixed ring mass and angular momentum. The two different phases defined by these response functions collapse, for small central black hole mass, to the thin and fat ring phases. In the fat phase, the zero area limit of the black Saturn ring has reduced spin j^2>1, which is related to the behaviour of the ring angular velocity. Using the `gravitomagnetic clock effect', for which a universality property is exhibited, it is shown that frame dragging measured by an asymptotic observer decreases, in both phases, when the central black hole mass increases, for fixed ring mass and angular momentum. A close parallelism between the results for the fat phase and those obtained recently for the double Kerr solution is drawn, considering also a regular black Saturn system with J^{BH}\neq 0.Comment: 18 pages, 8 figure

    The gravitomagnetic clock effect and its possible observation

    Get PDF
    The general relativistic gravitomagnetic clock effect involves a coupling between the orbital motion of a test particle and the rotation of the central mass and results in a difference in the proper periods of two counter-revolving satellites. It is shown that at O(c^-2) this effect has a simple analogue in the electromagnetic case. Moreover, in view of a possible measurement of the clock effect in the gravitational field of the Earth, we investigate the influence of some classical perturbing forces of the terrestrial space environment on the orbital motion of test bodies along opposite trajectories.Comment: LaTex2e, 9 pages, no tables, 2 figures, 18 references. Paper presented at COSPAR 2002 assembly held in Houston, Texas, 10 October 2002-19 October 2002. Expanded version published in Annalen der Physi

    Global aspects of gravitomagnetism

    Full text link
    We consider global properties of gravitomagnetism by investigating the gravitomagnetic field of a rotating cosmic string. We show that although the gravitomagnetic field produced by such a configuration of matter vanishes locally, it can be detected globally. In this context we discuss the gravitational analogue of the Aharonov-Bohm effect.Comment: 10 pages - Typeset using REVTE
    corecore