3,062 research outputs found
Simulation of a non-invasive charge detector for quantum cellular automata
Information in a Quantum Cellular Automata architecture is encoded in the
polarizazion state of a cell, i.e., in the occupation numbers of the quantum
dots of which the cell is made up. Non-invasive charge detectors of single
electrons in a quantum dot are therefore needed, and recent experiments have
shown that a quantum constriction electrostatically coupled to the quantum dot
may be a viable solution. We have performed a numerical simulation of a system
made of a quantum dot and a nearby quantum point contact defined, by means of
depleting metal gates, in a two-dimensional electron gas at a GaAs/AlGaAs
heterointerface. We have computed the occupancy of each dot and the resistance
of the quantum wire as a function of the voltage applied to the plunger gate,
and have derived design criteria for achieving optimal sensitivity.Comment: 8 pages, RevTeX, epsf, 5 figure
Assessment of institutional barriers to the use of natural gas fuel in automotive vehicle fleets
Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified. Recommendations for barrier removal were developed. Eight types of institutional barriers were assessed: (1) lack of a national standard for the safe design and certification of natural gas vehicles and refueling stations; (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements; (3) need for clarification of EPA's tampering enforcement policy; (4) the U.S. hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale for resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufactures warranties; and (8) need for a natural gas to gasoline equivalent units conversion factor for use in calculation of state road use taxes
Ingestive behaviour and physiology of the medicinal leech
Ingestion lasts 25 min in Hirudo medicinalis and is characterized by pharyngeal peristalsis which fills the crop. This peristalsis has an initial rate of 2.4 Hz which decays smoothly to 1.2 Hz at termination of ingestion. During ingestion, the leech body wall undergoes peristalsis which appears to aid in filling the crop diverticula. Body peristalsis begins at a rate of 10 min^(-1) and decreases linearly to 2 min^(-1) at termination. The body also undergoes dorsoventral flexions when blood flow is occluded. Blood meal size increases slightly with leech size: 8.4 g for 1-g leeches and 9.7 g for 2-g leeches. However, relative meal size decreases markedly with increasing animal size; from 8.15 times body mass for 1-g to 4.80 times for 2-g leeches. When intact leeches were exposed to micromolar concentrations of serotonin, there was an increase in the rate of pharyngeal peristalsis and the size of the blood meals. Leeches excrete the plasma from their ingested blood meals. Excretion is activated during ingestion, which increases feeding efficiency by increasing the proportion of blood cells in the ingestate. Excretion continues for 4–6 days following ingestion, removing all the remaining plasma from the ingestate. Leech ingestion comprises stereotyped muscular movements, secretion of saliva and excretion of plasma. A strikingly similar feeding physiology is seen in the blood-sucking insect Rhodnius, and we suggest that efficient sanguivory may require the convergent evolution of similar ingestive mechanisms
Bias spectroscopy and simultaneous SET charge state detection of Si:P double dots
We report a detailed study of low-temperature (mK) transport properties of a
silicon double-dot system fabricated by phosphorous ion implantation. The
device under study consists of two phosphorous nanoscale islands doped to above
the metal-insulator transition, separated from each other and the source and
drain reservoirs by nominally undoped (intrinsic) silicon tunnel barriers.
Metallic control gates, together with an Al-AlOx single-electron transistor,
were positioned on the substrate surface, capacitively coupled to the buried
dots. The individual double-dot charge states were probed using source-drain
bias spectroscopy combined with non-invasive SET charge sensing. The system was
measured in linear (VSD = 0) and non-linear (VSD 0) regimes allowing
calculations of the relevant capacitances. Simultaneous detection using both
SET sensing and source-drain current measurements was demonstrated, providing a
valuable combination for the analysis of the system. Evolution of the triple
points with applied bias was observed using both charge and current sensing.
Coulomb diamonds, showing the interplay between the Coulomb charging effects of
the two dots, were measured using simultaneous detection and compared with
numerical simulations.Comment: 7 pages, 6 figure
Coherent electronic transfer in quantum dot systems using adiabatic passage
We describe a scheme for using an all-electrical, rapid, adiabatic population
transfer between two spatially separated dots in a triple-quantum dot system.
The electron spends no time in the middle dot and does not change its energy
during the transfer process. Although a coherent population transfer method,
this scheme may well prove useful in incoherent electronic computation (for
example quantum-dot cellular automata) where it may provide a coherent
advantage to an otherwise incoherent device. It can also be thought of as a
limiting case of type II quantum computing, where sufficient coherence exists
for a single gate operation, but not for the preservation of superpositions
after the operation. We extend our analysis to the case of many intervening
dots and address the issue of transporting quantum information through a
multi-dot system.Comment: Replaced with (approximately) the published versio
Should doctors reconstruct the vaginal introitus of adolescent girls to mimic the virginal state?
Conductance of tubular nanowires with disorder
We calculate the conductance of tubular-shaped nanowires having many
potential scatterers at random positions. Our approach is based on the
scattering matrix formalism and our results analyzed within the scaling theory
of disordered conductors. When increasing the energy the conductance for a big
enough number of impurities in the tube manifests a systematic evolution from
the localized to the metallic regimes. Nevertheless, a conspicuous drop in
conductance is predicted whenever a new transverse channel is open. Comparison
with the semiclassical calculation leading to purely ohmic behavior is made.Comment: 8 pages, 5 figure
Making Classical Ground State Spin Computing Fault-Tolerant
We examine a model of classical deterministic computing in which the ground
state of the classical system is a spatial history of the computation. This
model is relevant to quantum dot cellular automata as well as to recent
universal adiabatic quantum computing constructions. In its most primitive
form, systems constructed in this model cannot compute in an error free manner
when working at non-zero temperature. However, by exploiting a mapping between
the partition function for this model and probabilistic classical circuits we
are able to show that it is possible to make this model effectively error free.
We achieve this by using techniques in fault-tolerant classical computing and
the result is that the system can compute effectively error free if the
temperature is below a critical temperature. We further link this model to
computational complexity and show that a certain problem concerning finite
temperature classical spin systems is complete for the complexity class
Merlin-Arthur. This provides an interesting connection between the physical
behavior of certain many-body spin systems and computational complexity.Comment: 24 pages, 1 figur
Reallocating resources to focused factories: a case study in chemotherapy
This study investigates the expected service performance associated with a proposal to reallocate resources from a centralized chemotherapy department to a breast cancer focused factory. Using a slotted queueing model we show that a decrease in performance is expected and calculate the amount of additional resources required to offset these losses. The model relies solely on typical outpatient scheduling system data, making the methodology easy to replicate in other outpatient clinic settings. Finally, the paper highlights important factors to consider when assigning capacity to focused factories. These considerations are generally relevant to other resource allocation decisions
- …
