288 research outputs found

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40

    Flavor tagged time-dependent angular analysis of the B0s → J/ψϕ decay and extraction of ΔΓs and the weak phase ϕs in ATLAS

    Get PDF
    A measurement of the B0s→J/ψϕ decay parameters, updated to include flavor tagging is reported using 4.9  fb−¹ of integrated luminosity collected by the ATLAS detector from √s=7  TeV pp collisions recorded in 2011 at the LHC. The values measured for the physical parameters are ϕs=0.12±0.25(stat)±0.05(syst)  rad ΔΓs=0.053±0.021(stat)±0.010(syst)  ps−¹ Γs=0.677±0.007(stat)±0.004(syst)  ps−¹ |A∥(0)|2=0.220±0.008(stat)±0.009(syst) |A0(0)|2=0.529±0.006(stat)±0.012(syst) δ⊥=3.89±0.47(stat)±0.11(syst)  rad where the parameter ΔΓs is constrained to be positive. The S-wave contribution was measured and found to be compatible with zero. Results for ϕs and ΔΓs are also presented as 68% and 95% likelihood contours, which show agreement with the Standard Model expectations

    Search for high-mass dilepton resonances in pp collisions at s√=8  TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to dielectron or dimuon final states. Results are presented from an analysis of proton-proton (pp) collisions at a center-of-mass energy of 8 TeV corresponding to an integrated luminosity of 20.3  fb−1 in the dimuon channel. A narrow resonance with Standard Model Z couplings to fermions is excluded at 95% confidence level for masses less than 2.79 TeV in the dielectron channel, 2.53 TeV in the dimuon channel, and 2.90 TeV in the two channels combined. Limits on other model interpretations are also presented, including a grand-unification model based on the E6 gauge group, Z∗ bosons, minimal Z' models, a spin-2 graviton excitation from Randall-Sundrum models, quantum black holes, and a minimal walking technicolor model with a composite Higgs boson

    Measurements of normalized differential cross sections for tt̄ production in pp collisions at √(s)=7  TeV using the ATLAS detector

    Get PDF
    Measurements of normalized differential cross sections for top-quark pair production are presented as a function of the top-quark transverse momentum, and of the mass, transverse momentum, and rapidity of the t¯t system, in proton–proton collisions at a center-of-mass energy of √s=7  TeV. The data set corresponds to an integrated luminosity of 4.6  fb−1, recorded in 2011 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one lepton and at least four jets with at least one of the jets tagged as originating from a b-quark. The measured spectra are corrected for detector efficiency and resolution effects and are compared to several Monte Carlo simulations and theory calculations. The results are in fair agreement with the predictions in a wide kinematic range. Nevertheless, data distributions are softer than predicted for higher values of the mass of the t¯t system and of the top-quark transverse momentum. The measurements can also discriminate among different sets of parton distribution functions

    Addendum to ‘measurement of the tt̄ production cross-section using eμ events with b-tagged jets in pp collisions at √s= 7 and 8 TeV with the ATLAS detector’

    Get PDF
    The ATLAS measurement of the inclusive top quark pair (tt̄) cross-section σtt̄ in proton–proton collisions at √s=8 TeV has been updated using the final 2012 luminosity calibration. The updated cross-section result is: σtt¯=242.9±1.7±5.5±5.1±4.2pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity and of the LHC beam energy. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. The measurement of the ratio of tt̄ cross-sections at √s=8 TeV and √s=7 TeV, and the √s=8 TeV fiducial measurement corresponding to the experimental acceptance of the leptons, have also been updated. The most precise measurement of the tt̄ cross-section (σtt̄) in proton–proton collisions at √s=8 TeV from the ATLAS Collaboration was made using events with an opposite-charge electron–muon pair and one or two b-tagged jets [1], and used a preliminary calibration of the integrated luminosity. The luminosity calibration has been finalised since [2] with a total uncertainty of 1.9%, corresponding to a substantial improvement on the previous uncertainty of 2.8%. Since the uncertainty on the integrated luminosity contributed 3.1% of the total 4.3% uncertainty on the σtt¯ measurement reported in [1], a significant improvement in the measurement is possible by using the new luminosity calibration, as documented in this Addendum. The new calibration corresponds to an integrated luminosity of 20.2 fb−¹ for the √s=8 TeV sample, a decrease of 0.2%. The cross-section was recomputed taking into account the effects on both the conversion of the tt¯ event yield to a cross-section, and the background estimates, giving a result of: σtt¯=242.9±1.7±5.5±5.1±4.2pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity, and of the LHC beam energy, giving a total uncertainty of 8.8 pb (3.6 %). The result is consistent with the theoretical prediction of 252.9−14.5+13.3 pb, calculated at next-to-next-to-leading-order with next-to-next-to-leading-logarithmic soft gluon terms with the top++ 2.0 program [3] as discussed in detail in Ref. [1]. The updated value of the ratio of cross-sections Rtt¯=σtt¯(8 TeV)/σtt¯(7 TeV) is: Rtt¯=1.328±0.024±0.015±0.038±0.001, with uncertainties defined as above, adding in quadrature to a total of 0.047. The largest uncertainty comes from the uncertainties on the integrated luminosities, considered to be uncorrelated between the √s=7 TeV and √s=8 TeV datasets. This result is 2.1σ below the expectation of 1.430±0.013 calculated from top++ 2.0 as discussed in Ref. [1]. The updated fiducial cross-sections, for a tt¯ decay producing an eμ pair within a given fiducial region, are shown in Table 1, updating Table 5 of Ref. [1]. The results are given both for the analysis requirements of pT>25GeV and |η|30GeV and |η|<2.4. They are given separately for the two cases where events with either one or both leptons coming from t→W→τ→ℓ rather than the direct decay t→W→ℓ(ℓ=e or μ) are included, or where the contributions involving τ decays are subtracted. The results shown for the √s=7 TeV data sample are unchanged with respect to those in Ref. [1]. The results for the top quark pole mass and limits on light supersymmetric top squarks presented in Ref. [1] are derived from √s=7 TeV and √s=8 TeV cross-section measurements taken together, and would be only slightly improved by the luminosity update described here

    Measurement of long-range pseudorapidity correlations and azimuthal harmonics in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Measurements of two-particle correlation functions and the first five azimuthal harmonics, v1 to v5, are presented, using 28 nb−1 of p+Pb collisions at a nucleon-nucleon center-of-mass energy of √sNN=5.02 TeV measured with the ATLAS detector at the LHC. Significant long-range “ridgelike” correlations are observed for pairs with small relative azimuthal angle (|Δϕ|2π/3) over the transverse momentum range 0.44 GeV. The v2(pT), v3(pT), and v4(pT) are compared to the vn coefficients in Pb+Pb collisions at √sNN=2.76 TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average pT of particles produced in the two collision systems

    Mutations in or near the Transmembrane Domain Alter PMEL Amyloid Formation from Functional to Pathogenic

    Get PDF
    PMEL is a pigment cell-specific protein that forms physiological amyloid fibrils upon which melanins ultimately deposit in the lumen of the pigment organelle, the melanosome. Whereas hypomorphic PMEL mutations in several species result in a mild pigment dilution that is inherited in a recessive manner, PMEL alleles found in the Dominant white (DW) chicken and Silver horse (HoSi)—which bear mutations that alter the PMEL transmembrane domain (TMD) and that are thus outside the amyloid core—are associated with a striking loss of pigmentation that is inherited in a dominant fashion. Here we show that the DW and HoSi mutations alter PMEL TMD oligomerization and/or association with membranes, with consequent formation of aberrantly packed fibrils. The aberrant fibrils are associated with a loss of pigmentation in cultured melanocytes, suggesting that they inhibit melanin production and/or melanosome integrity. A secondary mutation in the Smoky chicken, which reverts the dominant DW phenotype, prevents the accumulation of PMEL in fibrillogenic compartments and thus averts DW–associated pigment loss; a secondary mutation found in the Dun chicken likely dampens a HoSi–like dominant mutation in a similar manner. We propose that the DW and HoSi mutations alter the normally benign amyloid to a pathogenic form that antagonizes melanosome function, and that the secondary mutations found in the Smoky and Dun chickens revert or dampen pathogenicity by functioning as null alleles, thus preventing the formation of aberrant fibrils. We speculate that PMEL mutations can model the conversion between physiological and pathological amyloid

    Alternative splicing and the progesterone receptor in breast cancer

    Get PDF
    Progesterone receptor status is a marker for hormone responsiveness and disease prognosis in breast cancer. Progesterone receptor negative tumours have generally been shown to have a poorer prognosis than progesterone receptor positive tumours. The observed loss of progesterone receptor could be through a range of mechanisms, including the generation of alternatively spliced progesterone receptor variants that are not detectable by current screening methods. Many progesterone receptor mRNA variants have been described with deletions of various whole, multiple or partial exons that encode differing protein functional domains. These variants may alter the progestin responsiveness of a tissue and contribute to the abnormal growth associated with breast cancer. Absence of specific functional domains from these spliced variants may also make them undetectable or indistinguishable from full length progesterone receptor by conventional antibodies. A comprehensive investigation into the expression profile and activity of progesterone receptor spliced variants in breast cancer is required to advance our understanding of tumour hormone receptor status. This, in turn, may aid the development of new biomarkers of disease prognosis and improve adjuvant treatment decisions
    corecore