6,046 research outputs found
Novel metastable metallic and semiconducting germaniums
By means of ab initio metadynamics runs we explored the lower-pressure region
of the phase diagram of germanium. A monoclinic germanium phase with
four-membered rings, less dense than diamond and compressible into \beta-tin
phase (tI4) was found. A metallic bct-5 phase, mechanically stable down to room
conditions appeared between diamond and tI4. mC16 is a narrow-gap
semiconductor, while bct-5 is metallic and potentially still superconducting in
the very low pressure range. This finding may help resolving outstanding
experimental issues.Comment: 6 figure
Hydrodynamic synchronisation of non-linear oscillators at low Reynolds number
We introduce a generic model of weakly non-linear self-sustained oscillator
as a simplified tool to study synchronisation in a fluid at low Reynolds
number. By averaging over the fast degrees of freedom, we examine the effect of
hydrodynamic interactions on the slow dynamics of two oscillators and show that
they can lead to synchronisation. Furthermore, we find that synchronisation is
strongly enhanced when the oscillators are non-isochronous, which on the limit
cycle means the oscillations have an amplitude-dependent frequency.
Non-isochronity is determined by a nonlinear coupling being non-zero.
We find that its () sign determines if they synchronise in- or
anti-phase. We then study an infinite array of oscillators in the long
wavelength limit, in presence of noise. For , hydrodynamic
interactions can lead to a homogeneous synchronised state. Numerical
simulations for a finite number of oscillators confirm this and, when , show the propagation of waves, reminiscent of metachronal coordination.Comment: 4 pages, 2 figure
Orbital-spin order and the origin of structural distortion in MgTiO
We analyze electronic, magnetic, and structural properties of the spinel
compound MgTiO using the local density approximation+U method. We show
how MgTiO undergoes to a canted orbital-spin ordered state, where
charge, spin and orbital degrees of freedom are frozen in a geometrically
frustrated network by electron interactions. In our picture orbital order
stabilize the magnetic ground state and controls the degree of structural
distortions. The latter is dynamically derived from the cubic structure in the
correlated LDA+U potential. Our ground-state theory provides a consistent
picture for the dimerized phase of MgTiO, and might be applicable to
frustrated materials in general.Comment: 6 pages, 6 figure
Violation and persistence of the K-quantum number in warm rotating nuclei
The validity of the K-quantum number in rapidly rotating warm nuclei is
investigated as a function of thermal excitation energy U and angular momentum
I, for the rare-earth nucleus 163Er. The quantal eigenstates are described with
a shell model which combines a cranked Nilsson mean-field and a residual
two-body interaction, together with a term which takes into account the angular
momentum carried by the K-quantum number in an approximate way. K-mixing is
produced by the interplay of the Coriolis interaction and the residual
interaction; it is weak in the region of the discrete rotational bands (U
\lesim 1MeV), but it gradually increases until the limit of complete violation
of the K-quantum number is approached around U \sim 2 - 2.5 MeV. The calculated
matrix elements between bands having different K-quantum numbers decrease
exponentially as a function of , in qualitative agreement with recent
data.Comment: 29 pages, 7 figure
A novel bacterial l-arginine sensor controlling c-di-GMP levels in Pseudomonas aeruginosa
Nutrients such as amino acids play key roles in shaping the metabolism of microorganisms in natural environments and in host–pathogen interactions. Beyond taking part to cellular metabolism and to protein synthesis, amino acids are also signaling molecules able to influence group behavior in microorganisms, such as biofilm formation. This lifestyle switch involves complex metabolic reprogramming controlled by local variation of the second messenger 3′, 5′-cyclic diguanylic acid (c-di-GMP). The intracellular levels of this dinucleotide are finely tuned by the opposite activity of dedicated diguanylate cyclases (GGDEF signature) and phosphodiesterases (EAL and HD-GYP signatures), which are usually allosterically controlled by a plethora of environmental and metabolic clues. Among the genes putatively involved in controlling c-di-GMP levels in P. aeruginosa, we found that the multidomain transmembrane protein PA0575, bearing the tandem signature GGDEF-EAL, is an l-arginine sensor able to hydrolyse c-di-GMP. Here, we investigate the basis of arginine recognition by integrating bioinformatics, molecular biophysics and microbiology. Although the role of nutrients such as l-arginine in controlling the cellular fate in P. aeruginosa (including biofilm, pathogenicity and virulence) is already well established, we identified the first l-arginine sensor able to link environment sensing, c-di-GMP signaling and biofilm formation in this bacterium
Physics and application of photon number resolving detectors based on superconducting parallel nanowires
The Parallel Nanowire Detector (PND) is a photon number resolving (PNR)
detector which uses spatial multiplexing on a subwavelength scale to provide a
single electrical output proportional to the photon number. The basic structure
of the PND is the parallel connection of several NbN superconducting nanowires
(100 nm-wide, few nm-thick), folded in a meander pattern. PNDs were fabricated
on 3-4 nm thick NbN films grown on MgO (TS=400C) substrates by reactive
magnetron sputtering in an Ar/N2 gas mixture. The device performance was
characterized in terms of speed and sensitivity. PNDs showed a counting rate of
80 MHz and a pulse duration as low as 660ps full width at half maximum (FWHM).
Building the histograms of the photoresponse peak, no multiplication noise
buildup is observable. Electrical and optical equivalent models of the device
were developed in order to study its working principle, define design
guidelines, and develop an algorithm to estimate the photon number statistics
of an unknown light. In particular, the modeling provides novel insight of the
physical limit to the detection efficiency and to the reset time of these
detectors. The PND significantly outperforms existing PNR detectors in terms of
simplicity, sensitivity, speed, and multiplication noise
What Automated Planning Can Do for Business Process Management
Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle
Conductance quantization in etched Si/SiGe quantum point contacts
We fabricated strongly confined Schottky-gated quantum point contacts by
etching Si/SiGe heterostructures and observed intriguing conductance
quantization in units of approximately 1e2/h. Non-linear conductance
measurements were performed depleting the quantum point contacts at fixed
mode-energy separation. We report evidences of the formation of a half 1e2/h
plateau, supporting the speculation that adiabatic transmission occurs through
1D modes with complete removal of valley and spin degeneracies.Comment: to appear in Physical Review
- …
