59 research outputs found

    An updated nomenclature for plant ribosomal protein genes

    Get PDF
    Proponemos a la comunidad que trabaja con plantas una nueva nomenclatura universal y homogénea para las proteínas ribosomales (y sus parálogos

    The Plant Ontology Database: a community resource for plant structure and developmental stages controlled vocabulary and annotations

    Get PDF
    The Plant Ontology Consortium (POC, http://www.plantontology.org) is a collaborative effort among model plant genome databases and plant researchers that aims to create, maintain and facilitate the use of a controlled vocabulary (ontology) for plants. The ontology allows users to ascribe attributes of plant structure (anatomy and morphology) and developmental stages to data types, such as genes and phenotypes, to provide a semantic framework to make meaningful cross-species and database comparisons. The POC builds upon groundbreaking work by the Gene Ontology Consortium (GOC) by adopting and extending the GOC's principles, existing software and database structure. Over the past year, POC has added hundreds of ontology terms to associate with thousands of genes and gene products from Arabidopsis, rice and maize, which are available through a newly updated web-based browser (http://www.plantontology.org/amigo/go.cgi) for viewing, searching and querying. The Consortium has also implemented new functionalities to facilitate the application of PO in genomic research and updated the website to keep the contents current. In this report, we present a brief description of resources available from the website, changes to the interfaces, data updates, community activities and future enhancement

    Annotation of gene product function from high-throughput studies using the Gene Ontology.

    Get PDF
    High-throughput studies constitute an essential and valued source of information for researchers. However, high-throughput experimental workflows are often complex, with multiple data sets that may contain large numbers of false positives. The representation of high-throughput data in the Gene Ontology (GO) therefore presents a challenging annotation problem, when the overarching goal of GO curation is to provide the most precise view of a gene's role in biology. To address this, representatives from annotation teams within the GO Consortium reviewed high-throughput data annotation practices. We present an annotation framework for high-throughput studies that will facilitate good standards in GO curation and, through the use of new high-throughput evidence codes, increase the visibility of these annotations to the research community

    The Plant Ontology Database: a community resource for plant structure and developmental stages controlled vocabulary and annotations

    Get PDF
    The Plant Ontology Consortium (POC, http://www.plantontology.org) is a collaborative effort among model plant genome databases and plant researchers that aims to create, maintain and facilitate the use of a controlled vocabulary (ontology) for plants. The ontology allows users to ascribe attributes of plant structure (anatomy and morphology) and developmental stages to data types, such as genes and phenotypes, to provide a semantic framework to make meaningful cross-species and database comparisons. The POC builds upon groundbreaking work by the Gene Ontology Consortium (GOC) by adopting and extending the GOC's principles, existing software and database structure. Over the past year, POC has added hundreds of ontology terms to associate with thousands of genes and gene products from Arabidopsis, rice and maize, which are available through a newly updated web-based browser (http://www.plantontology.org/amigo/go.cgi) for viewing, searching and querying. The Consortium has also implemented new functionalities to facilitate the application of PO in genomic research and updated the website to keep the contents current. In this report, we present a brief description of resources available from the website, changes to the interfaces, data updates, community activities and future enhancement

    Plant Ontology (PO): a Controlled Vocabulary of Plant Structures and Growth Stages

    Get PDF
    The Plant Ontology Consortium (POC) (www.plantontology.org) is a collaborative effort among several plant databases and experts in plant systematics, botany and genomics. A primary goal of the POC is to develop simple yet robust and extensible controlled vocabularies that accurately reflect the biology of plant structures and developmental stages. These provide a network of vocabularies linked by relationships (ontology) to facilitate queries that cut across datasets within a database or between multiple databases. The current version of the ontology integrates diverse vocabularies used to describe Arabidopsis, maize and rice (Oryza sp.) anatomy, morphology and growth stages. Using the ontology browser, over 3500 gene annotations from three species-specific databases, The Arabidopsis Information Resource (TAIR) for Arabidopsis, Gramene for rice and MaizeGDB for maize, can now be queried and retrieved

    Dynamic Retrieval Augmented Generation of Ontologies using Artificial Intelligence (DRAGON-AI).

    Get PDF
    BACKGROUND: Ontologies are fundamental components of informatics infrastructure in domains such as biomedical, environmental, and food sciences, representing consensus knowledge in an accurate and computable form. However, their construction and maintenance demand substantial resources and necessitate substantial collaboration between domain experts, curators, and ontology experts. We present Dynamic Retrieval Augmented Generation of Ontologies using AI (DRAGON-AI), an ontology generation method employing Large Language Models (LLMs) and Retrieval Augmented Generation (RAG). DRAGON-AI can generate textual and logical ontology components, drawing from existing knowledge in multiple ontologies and unstructured text sources. RESULTS: We assessed performance of DRAGON-AI on de novo term construction across ten diverse ontologies, making use of extensive manual evaluation of results. Our method has high precision for relationship generation, but has slightly lower precision than from logic-based reasoning. Our method is also able to generate definitions deemed acceptable by expert evaluators, but these scored worse than human-authored definitions. Notably, evaluators with the highest level of confidence in a domain were better able to discern flaws in AI-generated definitions. We also demonstrated the ability of DRAGON-AI to incorporate natural language instructions in the form of GitHub issues. CONCLUSIONS: These findings suggest DRAGON-AIs potential to substantially aid the manual ontology construction process. However, our results also underscore the importance of having expert curators and ontology editors drive the ontology generation process
    corecore