236 research outputs found

    The Upsilon spectrum and m_b from full lattice QCD

    Get PDF
    We show results for the Upsilon spectrum calculated in lattice QCD including for the first time vacuum polarization effects for light u and d quarks as well as s quarks. We use gluon field configurations generated by the MILC collaboration. The calculations compare the results for a variety of u and d quark masses, as well as making a comparison to quenched results (in which quark vacuum polarisation is ignored) and results with only u and d quarks. The b quarks in the Upsilon are treated in lattice Nonrelativistic QCD through NLO in an expansion in the velocity of the b quark. We concentrate on accurate results for orbital and radial splittings where we see clear agreement with experiment once u, d and s quark vacuum polarisation effects are included. This now allows a consistent determination of the parameters of QCD. We demonstrate this consistency through the agreement of the Upsilon and B spectrum using the same lattice bare b quark mass. A one-loop matching to continuum QCD gives a value for the b quark mass in full lattice QCD for the first time. We obtain m_b^{\bar{MS}}(m_b^{\bar{MS}}) = 4.4(3) GeV. We are able to give physical results for the heavy quark potential parameters, r_0 = 0.469(7) fm and r_1 = 0.321(5) fm. Results for the fine structure in the spectrum and the Upsilon leptonic width are also presented. We predict the Upsilon - eta_b splitting to be 61(14) MeV, the Upsilon^{\prime} - eta_b^{\prime} splitting as 30(19) MeV and the splitting between the h_b and the spin-average of the chi_b states to be less than 6 MeV. Improvements to these calculations that will be made in the near future are discussed.Comment: 24 pages, 19 figures. Version to be published. Minor changes made and typographical errors corrected. Experimental leptonic widths updated in section

    The B Meson Decay Constant from Unquenched Lattice QCD

    Get PDF
    We present determinations of the B meson decay constant f_B and of the ratio f_{B_s}/f_B using the MILC collaboration unquenched gauge configurations which include three flavors of light sea quarks. The mass of one of the sea quarks is kept around the strange quark mass, and we explore a range in masses for the two lighter sea quarks down to m_s/8. The heavy b quark is simulated using Nonrelativistic QCD, and both the valence and sea light quarks are represented by the highly improved (AsqTad) staggered quark action. The good chiral properties of the latter action allow for a much smoother chiral extrapolation to physical up and down quarks than has been possible in the past. We find f_B = 216(9)(19)(4) (6) MeV and f_{B_s} /f_B = 1.20(3)(1).Comment: 4 pages, 2 figure

    Effective Field Theory for Few-Nucleon Systems

    Full text link
    We review the effective field theories (EFTs) developed for few-nucleon systems. These EFTs are controlled expansions in momenta, where certain (leading-order) interactions are summed to all orders. At low energies, an EFT with only contact interactions allows a detailed analysis of renormalization in a non-perturbative context and uncovers novel asymptotic behavior. Manifestly model-independent calculations can be carried out to high orders, leading to high precision. At higher energies, an EFT that includes pion fields justifies and extends the traditional framework of phenomenological potentials. The correct treatment of QCD symmetries ensures a connection with lattice QCD. Several tests and prospects of these EFTs are discussed.Comment: 55 pages, 18 figures, to appear in Ann. Rev. Nucl. Part. Sci. 52 (2002

    Renormalisation of heavy-light light ray operators

    Full text link
    We calculate the renormalisation of different light ray operators with one light degree of freedom and a static heavy quark. Both 222\to2- and 232\to3-kernels are considered. A comparison with the light-light case suggests that the mixing with three-particle operators is solely governed by the light degrees of freedom. Additionally we show that conformal symmetry is already broken at the level of the one loop counterterms due to the additional UV-renormalisation of a cusp in the two contributing Wilson-lines. This general feature can be used to fix the 222\to2-renormalisation kernels up to a constant. Some examples for applications of our results are given.Comment: 23 pages, 5 figures; v2: changed some wording, added a few references and one appendix concerning some subtleties related to gauge fixing and ghost terms; v3: clarified calculation in section 3.2., added an explicit calculation in section 5.2, corrected a few typos and one figure, added a few comments, results unchanged, except for typesetting matches version to appear in JHE

    Extracting the rho meson wavefunction from HERA data

    Full text link
    We extract the light-cone wavefunctions of the rho meson using the HERA data on diffractive rho photoproduction. We find good agreement with predictions for the distribution amplitude based on QCD sum rules and from the lattice. We also find that the data prefer a transverse wavefunction with enhanced end-point contributions.Comment: 13 pages, 7 figures, significant improvements over the original version with a new section on distribution amplitudes adde

    Two-Loop Soft Corrections and Resummation of the Thrust Distribution in the Dijet Region

    Full text link
    The thrust distribution in electron-positron annihilation is a classical precision QCD observable. Using renormalization group (RG) evolution in Laplace space, we perform the resummation of logarithmically enhanced corrections in the dijet limit, T1T\to 1 to next-to-next-to-leading logarithmic (NNLL) accuracy. We independently derive the two-loop soft function for the thrust distribution and extract an analytical expression for the NNLL resummation coefficient g3g_3. To combine the resummed expressions with the fixed-order results, we derive the log(R)\log(R)-matching and RR-matching of the NNLL approximation to the fixed-order NNLO distribution.Comment: 50 pages, 12 figures, 1 table. Few minor changes. Version accepted for publication in JHE

    Prompt photon and associated heavy quark production at hadron colliders with kt-factorization

    Full text link
    In the framework of the kt-factorization approach, the production of prompt photons in association with a heavy (charm or beauty) quarks at high energies is studied. The consideration is based on the O(\alpha \alpha_s^2) off-shell amplitudes of gluon-gluon fusion and quark-(anti)quark interaction subprocesses. The unintegrated parton densities in a proton are determined using the Kimber-Martin-Ryskin prescription. The analysis covers the total and differential cross sections and extends to specific angular correlations between the produced prompt photons and muons originating from the semileptonic decays of associated heavy quarks. Theoretical uncertainties of our evaluations are studied and comparison with the results of standard NLO pQCD calculations is performed. Our numerical predictions are compared with the recent experimental data taken by the D0 and CDF collaborations at the Tevatron. Finally, we extend our results to LHC energies.Comment: 14 pages, 10 figure

    Extracting the Distribution Amplitudes of the rho meson from the Color Glass Condensate

    Full text link
    We extract the leading twist-2 and subleading twist-3 Distribution Amplitudes (DAs) of the rho meson using the HERA data on diffractive rho photoproduction. We do so using several Colour Glass Condensate (CGC) inspired and a Regge inspired dipole models. We find that our extracted twist-2 DA is not much model dependent and is consistent with QCD Sum Rules and lattice predictions. The extracted twist-3 DA is more model dependent but is still consistent with the Sum Rules prediction.Comment: 21 pages, 10 figures, 3 tables. Section 6 revised, figures 8 and 9 and table 3 updated. Conclusions essentially unchange

    Efficiency improvements for the numerical computation of NLO corrections

    Full text link
    In this paper we discuss techniques, which lead to a significant improvement of the efficiency of the Monte Carlo integration, when one-loop QCD amplitudes are calculated numerically with the help of the subtraction method and contour deformation. The techniques discussed are: holomorphic and non-holomorphic division into sub-channels, optimisation of the integration contour, improvement of the ultraviolet subtraction terms, importance sampling and antithetic variates in loop momentum space, recurrence relations.Comment: 34 pages, version to be publishe

    HQET at order 1/m1/m: II. Spectroscopy in the quenched approximation

    Get PDF
    Using Heavy Quark Effective Theory with non-perturbatively determined parameters in a quenched lattice calculation, we evaluate the splittings between the ground state and the first two radially excited states of the BsB_s system at static order. We also determine the splitting between first excited and ground state, and between the BsB_s^* and BsB_s ground states to order 1/mb1/m_b. The Generalized Eigenvalue Problem and the use of all-to-all propagators are important ingredients of our approach.Comment: (1+18) pages, 3 figures (4 pdf files); pdflatex; v2: corrections to table 1, results unaffecte
    corecore