443 research outputs found

    Generalizations of the thermal Bogoliubov transformation

    Get PDF
    The thermal Bogoliubov transformation in thermo field dynamics is generalized in two respects. First, a generalization of the α\alpha--degree of freedom to tilde non--conserving representations is considered. Secondly, the usual 2×22\times2 Bogoliubov matrix is extended to a 4×44\times4 matrix including mixing of modes with non--trivial multiparticle correlations. The analysis is carried out for both bosons and fermions.Comment: 20 pages, Latex, Nordita 93/33

    The Imaginary Part of Nucleon Self-energy in hot nuclear matter

    Get PDF
    A semiphenomenological approach to the nucleon self-energy in nuclear matter at finite temperatures is followed. It combines elements of Thermo Field Dynamics for the treatment of finite temperature with a model for the self-energy, which evaluates the second order diagrams taking the needed dynamics of the NN interaction from experiment. The approach proved to be accurate at zero temperature to reproduce Im(Sigma) and other properties of nucleons in matter. In the present case we apply it to determine Im(Sigma) at finite temperatures. An effective NN cross section is deduced which can be easily used in analyses of heavy ion reactions.Comment: 15 pages, 6 postscripts figures, to be published in Nucl. Phys.

    Wondering and Wandering

    Get PDF
    For my thesis, I have taken the concept of excavation and used it as a visual metaphor for my artistic process. Using my recurring motifs of a hole, ladder, and the gem, I break down the writing into three sections. First, the hole, a metaphor for entering an image; second, the ladder, process as investigation; and lastly, the gem, which represents wonder and delight. This work is influenced by childhood fantasies, video games, and believing in magic

    Bacterial toxin-antitoxin systems: Translation inhibitors everywhere

    Get PDF
    Toxin-antitoxin (TA) systems are composed of two elements: a toxic protein and an antitoxin which is either an RNA (type I and III) or a protein (type II). Type II systems are abundant in bacterial genomes in which they move via horizontal gene transfer. They are generally composed of two genes organized in an operon, encoding a toxin and a labile antitoxin. When carried by mobile genetic elements, these small modules contribute to their stability by a phenomenon denoted as addiction. Recently, we developed a bioinformatics procedure that, along with experimental validation, allowed the identification of nine novel toxin super-families. Here, considering that some toxin super-families exhibit dramatic sequence diversity but similar structure, bioinformatics tools were used to predict tertiary structures of novel toxins. Seven of the nine novel super-families did not show any structural homology with known toxins, indicating that combination of sequence similarity and three-dimensional structure prediction allows a consistent classification. Interestingly, the novel super-families are translation inhibitors similar to the majority of known toxins indicating that this activity might have been selected rather than more detrimental traits such as DNA-gyrase inhibitors, which are very toxic for cells

    Sum rules and electrodynamics of high-Tc cuprates in the pseudogap state

    Full text link
    We explore connections between the electronic density of states (DOS) in a conducting system and the frequency dependence of the scattering rate 1/τ(ω)1/\tau(\omega) inferred from infrared spectroscopy. We show that changes in the DOS upon the development of energy gaps can be reliably tracked through the examination of the 1/τ(ω)1/\tau(\omega) spectra using the sum rules discussed in the text. Applying this analysis to the charge dynamics in high-TcT_c cuprates we found radically different trends in the evolution of the DOS in the pseudogap state and in the superconducting state.Comment: 4 pages, 3 figure
    corecore