4,759 research outputs found

    Nonreciprocal wave scattering on nonlinear string-coupled oscillators

    Full text link
    We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: the same wave is transmitted differently in two directions. Periodic regimes of scattering are analysed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a "chaotic diode", where transmission is periodic in one direction and chaotic in the opposite one, is reported.Comment: Version accepted for publicatio

    Entropy potential and Lyapunov exponents

    Full text link
    According to a previous conjecture, spatial and temporal Lyapunov exponents of chaotic extended systems can be obtained from derivatives of a suitable function: the entropy potential. The validity and the consequences of this hypothesis are explored in detail. The numerical investigation of a continuous-time model provides a further confirmation to the existence of the entropy potential. Furthermore, it is shown that the knowledge of the entropy potential allows determining also Lyapunov spectra in general reference frames where the time-like and space-like axes point along generic directions in the space-time plane. Finally, the existence of an entropy potential implies that the integrated density of positive exponents (Kolmogorov-Sinai entropy) is independent of the chosen reference frame.Comment: 20 pages, latex, 8 figures, submitted to CHAO

    Nonequilibrium dynamics of a stochastic model of anomalous heat transport: numerical analysis

    Full text link
    We study heat transport in a chain of harmonic oscillators with random elastic collisions between nearest-neighbours. The equations of motion of the covariance matrix are numerically solved for free and fixed boundary conditions. In the thermodynamic limit, the shape of the temperature profile and the value of the stationary heat flux depend on the choice of boundary conditions. For free boundary conditions, they also depend on the coupling strength with the heat baths. Moreover, we find a strong violation of local equilibrium at the chain edges that determine two boundary layers of size N\sqrt{N} (where NN is the chain length), that are characterized by a different scaling behaviour from the bulk. Finally, we investigate the relaxation towards the stationary state, finding two long time scales: the first corresponds to the relaxation of the hydrodynamic modes; the second is a manifestation of the finiteness of the system.Comment: Submitted to Journal of Physics A, Mathematical and Theoretica

    Do Linguistic Style and Readability of Scientific Abstracts affect their Virality?

    Full text link
    Reactions to textual content posted in an online social network show different dynamics depending on the linguistic style and readability of the submitted content. Do similar dynamics exist for responses to scientific articles? Our intuition, supported by previous research, suggests that the success of a scientific article depends on its content, rather than on its linguistic style. In this article, we examine a corpus of scientific abstracts and three forms of associated reactions: article downloads, citations, and bookmarks. Through a class-based psycholinguistic analysis and readability indices tests, we show that certain stylistic and readability features of abstracts clearly concur in determining the success and viral capability of a scientific article.Comment: Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media (ICWSM 2012), 4-8 June 2012, Dublin, Irelan

    Slow energy relaxation and localization in 1D lattices

    Full text link
    We investigate the energy relaxation process produced by thermal baths at zero temperature acting on the boundary atoms of chains of classical anharmonic oscillators. Time-dependent perturbation theory allows us to obtain an explicit solution of the harmonic problem: even in such a simple system nontrivial features emerge from the interplay of the different decay rates of Fourier modes. In particular, a crossover from an exponential to an inverse-square-root law occurs on a time scale proportional to the system size NN. A further crossover back to an exponential law is observed only at much longer times (of the order N3N^3). In the nonlinear chain, the relaxation process is initially equivalent to the harmonic case over a wide time span, as illustrated by simulations of the β\beta Fermi-Pasta-Ulam model. The distinctive feature is that the second crossover is not observed due to the spontaneous appearance of breathers, i.e. space-localized time-periodic solutions, that keep a finite residual energy in the lattice. We discuss the mechanism yielding such solutions and also explain why it crucially depends on the boundary conditions.Comment: 16 pages, 6 figure

    Thermal conduction in classical low-dimensional lattices

    Full text link
    Deriving macroscopic phenomenological laws of irreversible thermodynamics from simple microscopic models is one of the tasks of non-equilibrium statistical mechanics. We consider stationary energy transport in crystals with reference to simple mathematical models consisting of coupled oscillators on a lattice. The role of lattice dimensionality on the breakdown of the Fourier's law is discussed and some universal quantitative aspects are emphasized: the divergence of the finite-size thermal conductivity is characterized by universal laws in one and two dimensions. Equilibrium and non-equilibrium molecular dynamics methods are presented along with a critical survey of previous numerical results. Analytical results for the non-equilibrium dynamics can be obtained in the harmonic chain where the role of disorder and localization can be also understood. The traditional kinetic approach, based on the Boltzmann-Peierls equation is also briefly sketched with reference to one-dimensional chains. Simple toy models can be defined in which the conductivity is finite. Anomalous transport in integrable nonlinear systems is briefly discussed. Finally, possible future research themes are outlined.Comment: 90 pages, revised versio

    The one-dimensional Lennard-Jones system: collective fluctuations and breakdown of hydrodynamics

    Full text link
    The dynamical correlations of a model consisting of particles constrained on the line and interacting with a nearest--neighbour Lennard--Jones potential are computed by molecular--dynamics simulations. A drastic qualitative change of the spectral shape, from a phonon--like to a diffusive form, is observed upon reducing the particle density even ad moderate temperatures. The latter scenario is due to the spontaneus fragmentation of the crystal--like structure into an ensemble of "clusters" colliding among themselves. In both cases, the spectral linewidths do not follow the usual q^2 behaviour for small wavenumbers q, thus signalling a breakdown of linearized hydrodynamics. This anomaly is traced back by the presence of correlations due to the reduced dimensionality.Comment: To be published in European Physical Journal

    Cooling nonlinear lattices toward localisation

    Full text link
    We describe the energy relaxation process produced by surface damping on lattices of classical anharmonic oscillators. Spontaneous emergence of localised vibrations dramatically slows down dissipation and gives rise to quasi-stationary states where energy is trapped in the form of a gas of weakly interacting discrete breathers. In one dimension (1D), strong enough on--site coupling may yield stretched--exponential relaxation which is reminiscent of glassy dynamics. We illustrate the mechanism generating localised structures and discuss the crucial role of the boundary conditions. For two--dimensional (2D) lattices, the existence of a gap in the breather spectrum causes the localisation process to become activated. A statistical analysis of the resulting quasi-stationary state through the distribution of breathers' energies yield information on their effective interactions.Comment: 10 pages, 11 figure

    On the anomalous thermal conductivity of one-dimensional lattices

    Full text link
    The divergence of the thermal conductivity in the thermodynamic limit is thoroughly investigated. The divergence law is consistently determined with two different numerical approaches based on equilibrium and non-equilibrium simulations. A possible explanation in the framework of linear-response theory is also presented, which traces back the physical origin of this anomaly to the slow diffusion of the energy of long-wavelength Fourier modes. Finally, the results of dynamical simulations are compared with the predictions of mode-coupling theory.Comment: 5 pages, 3 figures, to appear in Europhysics Letter
    corecore